Efficient Deconvolution of Ground-Penetrating Radar Data

被引:24
|
作者
Schmelzbach, Cedric [1 ]
Huber, Emanuel [2 ]
机构
[1] ETH, Dept Earth Sci, Inst Geophys, CH-8092 Zurich, Switzerland
[2] Univ Basel, Appl & Environm Geol, CH-4056 Basel, Switzerland
来源
关键词
Deconvolution; ground-penetrating radar (GPR); inverse filtering; signal processing; GPR DATA; DETERMINISTIC DECONVOLUTION; BLIND DECONVOLUTION; WAVELET ESTIMATION; OPTIMIZATION; PRINCIPLES;
D O I
10.1109/TGRS.2015.2419235
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The time (vertical) resolution enhancement of ground-penetrating radar (GPR) data by deconvolution is a long-standing problem due to the mixed-phase characteristics of the source wavelet. Several approaches have been proposed, which take the mixed-phase nature of the GPR source wavelet into account. However, most of these schemes are usually laborious and/or computationally intensive and have not yet found widespread use. Here, we propose a simple and fast approach to GPR deconvolution that requires only a minimal user input. First, a trace-by-trace minimum-phase (spiking) deconvolution is applied to remove the minimum-phase part of the mixed-phase GPR wavelet. Then, a global phase rotation is applied to maximize the sparseness (kurtosis) of the minimum-phase deconvolved data to correct for phase distortions that remain after the minimum-phase deconvolution. Applications of this scheme to synthetic and field data demonstrate that a significant improvement in image quality can be achieved, leading to deconvolved data that are a closer representation of the underlying reflectivity structure than the input or minimum-phase deconvolved data. Synthetic-data tests indicate that, because of the temporal and spatial correlation inherent in the GPR data due to the frequency-and wavenumber-bandlimited nature of the GPR source wavelet and the reflectivity structure, a significant number of samples are required for a reliable sparseness (kurtosis) estimate and stable phase rotation. This observation calls into question the blithe application of kurtosis-based methods within short time windows such as that for time-variant deconvolution.
引用
收藏
页码:5209 / 5217
页数:9
相关论文
共 50 条
  • [21] Sparse Blind Deconvolution of Ground Penetrating Radar Data
    Jazayeri, Sajad
    Kazemi, Nasser
    Kruse, Sarah
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3703 - 3712
  • [22] Reconstructing properties of subsurface from ground-penetrating radar data
    Zhou, Hui
    Qiu, Dongling
    Takenaka, Takashi
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 761 - +
  • [23] Automatic detection of hyperbolic signatures in ground-penetrating radar data
    Al-Nuaimy, W
    Huang, Y
    Eriksen, A
    Nguyen, VT
    SUBSURFACE AND SURFACE SENSING TECHNOLOGIES AND APPLICATIONS III, 2001, 4491 : 327 - 335
  • [24] The application of wavelet transform in ground-penetrating radar data processing
    Fu, XL
    Wu, JS
    Wan, MH
    ENGINEERING AND ENVIRONMENTAL GEOPHYSICS FOR THE 21ST CENTURY, 1997, : 260 - 264
  • [25] Removal of wavelet dispersion from ground-penetrating radar data
    Irving, JD
    Knight, RJ
    GEOPHYSICS, 2003, 68 (03) : 960 - 970
  • [26] Interpreting Ground-penetrating Radar for Archaeology
    Kvamme, Kenneth L.
    AMERICAN ANTIQUITY, 2013, 78 (04) : 803 - 804
  • [27] Ground-penetrating radar antenna modeling
    Huang, ZB
    Demarest, K
    Plumb, R
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 778 - 780
  • [28] Ground-penetrating radar probes the past
    不详
    MATERIALS EVALUATION, 1999, 57 (07) : 745 - 746
  • [29] Forestry applications of ground-penetrating radar
    Lorenzo, H.
    Perez-Gracia, V.
    Novo, A.
    Armesto, J.
    FOREST SYSTEMS, 2010, 19 (01) : 5 - 17
  • [30] Ground-penetrating radar for archaeology.
    Schroedl, Gerald F.
    GEOARCHAEOLOGY-AN INTERNATIONAL JOURNAL, 2006, 21 (06): : 641 - 642