Five-loop ε expansion for O (n) X O (m) spin models

被引:39
|
作者
Calabrese, P
Parruccini, P
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56126 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56100 Pisa, Italy
关键词
D O I
10.1016/j.nuclphysb.2003.12.002
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the renormalization group functions of a Landau-Ginzburg-Wilson Hamiltonian with O(n) x O(m) symmetry up to five-loop in minimal subtraction scheme. The line n(+)(m, d), which limits the region of second-order phase transition, is reconstructed in the framework of the epsilon = 4 - d expansion for generic values of m up to O(epsilon(5)). For the physically interesting case of noncollinear but planar orderings (m = 2) we obtain n(+)(2, 3) = 6.1(6) by exploiting different resummation procedures. We substantiate this results reanalyzing six-loop fixed dimension series with pseudo-epsilon expansion, obtaining n(+)(2, 3) = 6.22(12). We also provide predictions for the critical exponents characterizing the second-order phase transition occurring for n > n(+). (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:568 / 596
页数:29
相关论文
共 50 条
  • [31] Five-loop contributions to low-N non-singlet anomalous dimensions in QCD
    Herzog, F.
    Moch, S.
    Ruijl, B.
    Ueda, T.
    Vermaseren, J. A. M.
    Vogt, A.
    PHYSICS LETTERS B, 2019, 790 : 436 - 443
  • [32] Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization group approximation
    Calabrese, P
    Orlov, EV
    Pakhnin, DV
    Sokolov, AI
    PHYSICAL REVIEW B, 2004, 70 (09) : 094425 - 1
  • [33] Borel Summability of the 1/N Expansion in Quartic O(N)-Vector Models
    Ferdinand, L.
    Gurau, R.
    Perez-Sanchez, C. I.
    Vignes-Tourneret, F.
    ANNALES HENRI POINCARE, 2024, 25 (03): : 2037 - 2064
  • [34] IMPROVED ESTIMATORS FOR A CLUSTER UPDATING OF O(N) SPIN MODELS
    HASENBUSCH, M
    NUCLEAR PHYSICS B, 1990, 333 (02) : 581 - 592
  • [35] NONUNIFORMITY OF THE 1/N EXPANSION FOR 2-DIMENSIONAL O(N) MODELS
    PATRASCIOIU, A
    SEILER, E
    NUCLEAR PHYSICS B, 1995, 443 (03) : 596 - 604
  • [36] THE CONSTRAINT EFFECTIVE POTENTIAL FOR O(N)-SYMMETRICAL SPIN MODELS
    GOCKELER, M
    LEUTWYLER, H
    PHYSICS LETTERS B, 1991, 253 (1-2) : 193 - 199
  • [37] Approaching the conformal window of O(n) x O(m) symmetric Landau-Ginzburg models using the conformal bootstrap
    Nakayama, Yu
    Ohtsuki, Tomoki
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [38] On the chiral expansion for parton distributions at small x ∼ O(mπ2)
    Kivel, N.
    Polyakov, M. V.
    PHYSICS LETTERS B, 2008, 664 (1-2) : 64 - 69
  • [39] Five-loop root epsilon-expansions for random Ising model and marginal spin dimensionality for cubic systems
    Shalaev, BN
    Antonenko, SA
    Sokolov, AI
    PHYSICS LETTERS A, 1997, 230 (1-2) : 105 - 110
  • [40] Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
    Calabrese, P
    Orlov, EV
    Pakhnin, DV
    Sokolov, AI
    CONDENSED MATTER PHYSICS, 2005, 8 (01) : 193 - 211