Adaptive Neuro-fuzzy approach in friction identification

被引:0
|
作者
Ismail, Muhammad Zaiyad Muda [1 ]
机构
[1] Univ Teknol MARA, Fak Kejuruteraan Mekan, Shah Alam, Selangor, Malaysia
关键词
D O I
10.1088/1757-899X/131/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria
    Olatomiwa, Lanre
    Mekhilef, Saad
    Shamshirband, Shahaboddin
    Petkovic, Dalibor
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 : 1784 - 1791
  • [22] Online affine model identification of nonlinear processes using a new adaptive neuro-fuzzy approach
    Salahshoor, Karim
    Hamzehnejad, Morteza
    Zakeri, Sepide
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5534 - 5554
  • [23] Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach
    Chen, Chin-Fu
    Feng, Xin
    Szeto, Jack
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2006, 30 (05) : 372 - 381
  • [24] Neuro-fuzzy approach for identification of traffic signs by infrared technology
    Marichal, G. N.
    Gonzalez, E. J.
    Acosta, L.
    Toledo, J.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (02): : 26 - +
  • [25] Neuro-fuzzy approach for identification of traffic signs by infrared technology
    Marichal, G.N.
    González, E.J.
    Acosta, L.
    Toledo, J.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2007, 4 (02): : 26 - 31
  • [26] Simple adaptive neuro-fuzzy controller
    Kalaykov, I
    LOW COST AUTOMATION 1998 (LCA'98), 1999, : 243 - 248
  • [27] An Incremental Adaptive Neuro-Fuzzy Networks
    Kwak, Keun-Chang
    2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 1213 - 1216
  • [28] Adaptive neuro-fuzzy pedagogical recommender
    Sevarac, Zoran
    Devedzic, Vladan
    Jovanovic, Jelena
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9797 - 9806
  • [29] Neuro-fuzzy friction compensation to robotic actuators
    Gomes, SCP
    Gomes, DD
    Diniz, CM
    2005 IEEE International Conference on Mechatronics, 2005, : 846 - 851
  • [30] A Neuro-Fuzzy Identification of ECG Beats
    Mohammed Amine Chikh
    Mohammed Ammar
    Radja Marouf
    Journal of Medical Systems, 2012, 36 : 903 - 914