Label-free protein detection based on vertically aligned carbon nanotube gated field-effect transistors

被引:6
|
作者
Croce, Robert A., Jr. [1 ]
Vaddiraju, Sagar [2 ]
Chan, Pik-Yiu [1 ]
Seyta, Rea [1 ]
Jain, Faquir C. [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Nanomat Optoelect Lab, Polymer Program, Inst Mat Sci, Storrs, CT 06269 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2011年 / 160卷 / 01期
关键词
Biosensors; Semiconductor fabrication; Nanotechnology; Field-effect transistors; Electrochemical sensors; Carbon nanotubes; APTAMER-BASED BIOSENSOR; ELECTROCHEMICAL DETECTION; FOREST; IMMUNOSENSOR; MONOLAYER; SENSOR;
D O I
10.1016/j.snb.2011.07.026
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Reliable detection using aptamers, which is key for monitoring complex metabolites and proteins, is often hindered by the lack of a robust sensing scheme capable of high density fabrication. As a result, current research is focusing on the coexistence of nanomaterials and conventional CMOS processes for the fabrication of the next generation of electrochemical detectors. Herein, we report the successful electrochemical detection of the protein thrombin utilizing a novel thrombin aptamer functionalized single-walled carbon nanotube (SWNT) gated silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET). Owing to thrombin's positive charge in an aqueous environment (pH = 5.5), the drain current of the SWNT gated MOSFET increased linearly with increasing thrombin concentration, resulting in sensitivities as high as 33 mu A/(mu M mm(2)). A theoretical model has been presented to explain the operating principle of this gated MOSFET-based biosensor and revealed that the electron density in the channel increases with the addition of positively charged thrombin, in addition to flat-band and threshold voltage modification due to the work function of SWNTs. Such advanced MOSFET-based sensing schemes present considerable advantages over traditional methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [21] Graphene-based liquid gated field-effect transistor for label-free detection of DNA hybridization
    Kong, Xiangdong
    Bahri, Mohamed
    Djebbi, Khouloud
    Shi, Biao
    Zhou, Daming
    Tlili, Chaker
    Wang, Deqiang
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 387 - 391
  • [22] Carbon nanotube gated lateral resonant tunneling field-effect transistors
    Wang, DP
    Perkins, BR
    Yin, AJ
    Zaslavsky, A
    Xu, JM
    Beresford, R
    Snider, GL
    APPLIED PHYSICS LETTERS, 2005, 87 (15) : 1 - 3
  • [23] Label-Free Detection of DNA by Field-Effect Devices
    Kataoka-Hamai, Chiho
    Miyahara, Yuji
    IEEE SENSORS JOURNAL, 2011, 11 (12) : 3153 - 3160
  • [24] A label-free immunosensor based on a graphene water-gated field-effect transistor
    Picca, Rosaria Anna
    Blasi, Davide
    Macchia, Eleonora
    Manoli, Kyriaki
    Di Franco, Cinzia
    Scamarcio, Gaetano
    Torricelli, Fabrizio
    Zurutuza, Amaia
    Napal, Ilargi
    Centeno, Alba
    Torsi, Luisa
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES (IWASI), 2019, : 136 - 138
  • [25] Carbon Nanotube-Based Electrochemical Biosensor for Label-Free Protein Detection
    Janssen, Jesslyn
    Lambeta, Mike
    White, Paul
    Byagowi, Ahmad
    BIOSENSORS-BASEL, 2019, 9 (04):
  • [26] Label-Free Biosensors Based on Aptamer-Modified Graphene Field-Effect Transistors
    Ohno, Yasuhide
    Maehashi, Kenzo
    Matsumoto, Kazuhiko
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) : 18012 - 18013
  • [27] Graphene field-effect transistors for label-free chemical and biological sensors
    Ohno, Yasuhide
    Maehashi, Kenzo
    Matsumoto, Kazuhiko
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [28] Hysteresis-Free Carbon Nanotube Field-Effect Transistors
    Park, Rebecca S.
    Hills, Gage
    Sohn, Joon
    Mitra, Subhasish
    Shulaker, Max M.
    Wong, H. -S. Philip
    ACS NANO, 2017, 11 (05) : 4785 - 4791
  • [29] Carbon nanotube field-effect transistors
    不详
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2008, 2 (03): : A1 - A1