Supersonic relative velocity effect on the baryonic acoustic oscillation measurements

被引:60
|
作者
Yoo, Jaiyul [1 ,2 ]
Dalal, Neal [3 ]
Seljak, Uros [1 ,2 ,4 ,5 ,6 ]
机构
[1] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[3] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[6] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea
关键词
galaxy clustering; power spectrum; baryon acoustic oscillations; POWER-SPECTRUM; REIONIZATION; CONSTRAINTS; DENSITY;
D O I
10.1088/1475-7516/2011/07/018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Scale-dependent bias in the baryonic-acoustic-oscillation-scale intergalactic neutral hydrogen
    Pontzen, Andrew
    PHYSICAL REVIEW D, 2014, 89 (08):
  • [22] Measurement of the baryonic acoustic oscillation scale in 21 cm intensity fluctuations during the reionization era
    Rhook, Kirsty J.
    Geil, Paul M.
    Wyithe, J. Stuart B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 392 (04) : 1388 - 1396
  • [23] The accuracy of acoustic vertical velocity measurements: instrument biases and the effect of Zooplankton migration
    Ott, MW
    CONTINENTAL SHELF RESEARCH, 2005, 25 (02) : 243 - 257
  • [24] MEASUREMENTS OF ACOUSTIC PROPERTIES OF SEDIMENTS .1. ACOUSTIC VELOCITY
    HAMPTON, LD
    WILLIAMS, JD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (11): : 1673 - &
  • [25] Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-α forest
    McDonald, Patrick
    Eisenstein, Daniel J.
    PHYSICAL REVIEW D, 2007, 76 (06)
  • [26] RELATIVE ERRORS IN GROUP VELOCITY-MEASUREMENTS
    KNOPOFF, L
    JOURNAL OF GEOPHYSICS-ZEITSCHRIFT FUR GEOPHYSIK, 1977, 43 (03): : 509 - 510
  • [27] Array measurements and characterizations with relative velocity as a parameter
    Carey, WM
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 181 - 184
  • [28] Velocity and turbulence measurements in a supersonic base flow with mass bleed
    Mathur, T
    Dutton, JC
    AIAA JOURNAL, 1996, 34 (06) : 1153 - 1159
  • [29] Simultaneous density and velocity measurements in a supersonic turbulent boundary layer
    He Lin
    Yi Shi-He
    Tian Li-Feng
    Chen Zhi
    Zhu Yang-Zhu
    CHINESE PHYSICS B, 2013, 22 (02)
  • [30] Measurements of the local relative velocity and the profile effects on prediction of the area-averaged relative velocity
    Doup, Benjamin
    Zhou, Xinquan
    Kim, In Hun
    Sun, Xiaodong
    Multiphase Science and Technology, 2013, 25 (2-4) : 169 - 199