Non-Local Deep Features for Salient Object Detection

被引:401
|
作者
Luo, Zhiming [1 ,2 ,3 ]
Mishra, Akshaya [4 ]
Achkar, Andrew [4 ]
Eichel, Justin [4 ]
Li, Shaozi [1 ,2 ]
Jodoin, Pierre-Marc [3 ]
机构
[1] Xiamen Univ, Dept Cognit Sci, Xiamen, Peoples R China
[2] Xiamen Univ, Fujian Key Lab Brain Inspired Comp Tech & Applica, Xiamen, Peoples R China
[3] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ, Canada
[4] Miovis Technol Inc, Kitchener, ON, Canada
关键词
IMAGE; SEGMENTATION; MUMFORD;
D O I
10.1109/CVPR.2017.698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a mult-iresolution 4 x 5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.
引用
收藏
页码:6593 / 6601
页数:9
相关论文
共 50 条
  • [31] Salient Object Detection by Fusing Local and Global Contexts
    Ren, Qinghua
    Lu, Shijian
    Zhang, Jinxia
    Hu, Renjie
    IEEE Transactions on Multimedia, 2021, 23 : 1442 - 1453
  • [32] Deep Salient Object Detection with Contextual Information Guidance
    Liu, Yi
    Han, Jungong
    Zhang, Qiang
    Shan, Caifeng
    IEEE Transactions on Image Processing, 2020, 29 : 360 - 374
  • [33] RGBD Salient Object Detection via Deep Fusion
    Qu, Liangqiong
    He, Shengfeng
    Zhang, Jiawei
    Tian, Jiandong
    Tang, Yandong
    Yang, Qingxiong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) : 2274 - 2285
  • [34] Deep layer guided network for salient object detection
    Liu, Zhengyi
    Li, Quanlong
    Li, Wei
    NEUROCOMPUTING, 2020, 372 : 55 - 63
  • [35] INTEGRATED DEEP AND SHALLOW NETWORKS FOR SALIENT OBJECT DETECTION
    Zhang, Jing
    Li, Bo
    Dai, Yuchao
    Porikli, Fatih
    He, Mingyi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1537 - 1541
  • [36] Employing Deep Part-Object Relationships for Salient Object Detection
    Liu, Yi
    Zhang, Qiang
    Zhang, Dingwen
    Han, Jungong
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1232 - 1241
  • [37] Deepside: A general deep framework for salient object detection
    Fu, Keren
    Zhao, Qijun
    Gu, Irene Yu-Hua
    Yang, Jie
    NEUROCOMPUTING, 2019, 356 : 69 - 82
  • [38] Deep Salient Object Detection With Contextual Information Guidance
    Liu, Yi
    Han, Jungong
    Zhang, Qiang
    Shan, Caifeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 360 - 374
  • [39] Deep quaternion Fourier transform for salient object detection
    Revathi, T.
    Rajalaxmi, T. M.
    Rajan, R. Sundara
    Freire, Wilhelm Passarella
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 11331 - 11340
  • [40] Non-local Matching of Superpixel-based Deep Features for Color Transfer
    Carrillo, Hernan
    Clement, Michael
    Bugeau, Aurelie
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 38 - 47