Covariant density functional theory with spectroscopic properties and a microscopic theory of quantum phase transitions in nuclei

被引:0
|
作者
Ring, P. [1 ]
Lalazissis, G. A. [2 ]
Li, Z. P. [3 ]
Meng, J. [3 ]
Niksic, T. [4 ]
Prochniak, L. [5 ,6 ]
Vretenar, D. [4 ]
Yao, J. M.
机构
[1] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[2] Aristotle Univ Thessaloniki, Dept Theoret Phys, GR-54124 Thessaloniki, Greece
[3] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[4] Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, Croatia
[5] Marie Curie Sklodowska Univ, Inst Phys, Lublin, Poland
[6] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
关键词
MEAN-FIELD-THEORY; HARTREE-BOGOLIUBOV DESCRIPTION; ANGULAR-MOMENTUM PROJECTION; WAVE-FUNCTIONS; FINITE NUCLEI; MG-24; EXCITATIONS; STRENGTHS; ISOTOPES; MODEL;
D O I
10.1088/1742-6596/267/1/012043
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Covariant Density functional theory is used as a basis for a microscopic description of spectroscopic properties of quantum phase transitions in nuclei. Since it is well known that the mean field approximation breaks down in transitional nuclei, where configuration mixing and fluctuations connected with broken symmetries play an important role, a theory is developed which uses the Relativistic Generator Coordinate Method to perform configuration mixing calculations of angular momentum and particle number projected wave functions. As applications with show 3D-calculations of the spectrum of low-lying collective states in the nucleus Mg-24. This method can also be used to study the behavior of characteristic physical quantities as a function of the physical control parameter, the number of nucleons, in the region of quantum phase transitions.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Critical temperature for shape transition in hot nuclei within covariant density functional theory
    Zhang, W.
    Niu, Y. F.
    PHYSICAL REVIEW C, 2018, 97 (05)
  • [42] Spherical, Axial, and Triaxial Symmetries in the Study of Halo Nuclei with Covariant Density Functional Theory
    Xiang, Yifeng
    Luo, Qingjin
    Yang, Siqi
    Zhang, Kaiyuan
    SYMMETRY-BASEL, 2023, 15 (07):
  • [43] Spectroscopies of rod- and pear-shaped nuclei in covariant density functional theory
    Zhao, Pengwei
    Li, Zhipan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2018, 27 (10):
  • [44] Covariant density functional theory for exotic nuclei near the neutron drip-line
    Chen, Y.
    Li, L. L.
    Li, Z. P.
    Liang, H. Z.
    Long, W. H.
    Ring, P.
    Van Giai, N.
    Yao, J. M.
    Zhang, S. Q.
    Zhang, Y.
    Zhao, P. W.
    Zhou, S. G.
    Meng, J.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [45] Nuclear fission in covariant density functional theory
    Afanasjev, A. V.
    Abusara, H.
    Ring, P.
    FISSION 2013 - FIFTH INTERNATIONAL WORKSHOP ON NUCLEAR FISSION AND FISSION PRODUCT SPECTROSCOPY, 2013, 62
  • [46] Nuclear moments in covariant density functional theory
    Meng, J.
    Zhao, P. W.
    Zhang, S. Q.
    Hu, J. N.
    Li, J.
    PHYSICA SCRIPTA, 2014, 89 (05)
  • [47] MODERN APPLICATIONS OF COVARIANT DENSITY FUNCTIONAL THEORY
    Ring, P.
    Abusara, H.
    Afanasjev, A. V.
    Lalazissis, G. A.
    Niksic, T.
    Vretenar, D.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2011, 20 (02): : 235 - 243
  • [48] Covariant density functional theory: The role of the pion
    Lalazissis, G. A.
    Karatzikos, S.
    Serra, M.
    Otsuka, T.
    Ring, P.
    PHYSICAL REVIEW C, 2009, 80 (04):
  • [49] Covariant density functional theory for magnetic rotation
    Peng, J.
    Meng, J.
    Ring, P.
    Zhang, S. Q.
    PHYSICAL REVIEW C, 2008, 78 (02):
  • [50] Covariant density functional theory for antimagnetic rotation
    Zhao, P. W.
    Peng, J.
    Liang, H. Z.
    Ring, P.
    Meng, J.
    PHYSICAL REVIEW C, 2012, 85 (05):