Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8+ T cell antitumor immunity

被引:14
|
作者
Li, Anqi [1 ,2 ,3 ]
Chang, Yuzhou [2 ,3 ,4 ]
Song, No-Joon [2 ,3 ]
Wu, Xingjun [2 ,3 ]
Chung, Dongjun [2 ,3 ,4 ]
Riesenberg, Brian P. [2 ,3 ]
Velegraki, Maria [2 ,3 ]
Giuliani, Giuseppe D. [5 ,6 ]
Das, Komal [2 ,3 ]
Okimoto, Tamio [1 ]
Kwon, Hyunwoo [1 ,2 ,3 ]
Chakravarthy, Karthik B. [1 ,2 ,3 ]
Bolyard, Chelsea [2 ,3 ]
Wang, Yi [2 ,3 ]
He, Kai [2 ,3 ,7 ]
Gatti-Mays, Margaret [2 ,3 ,7 ]
Das, Jayajit [2 ,3 ,8 ]
Yang, Yiping [2 ,3 ,9 ]
Gewirth, Daniel T. [10 ]
Ma, Qin [2 ,3 ,4 ]
Carbone, David [2 ,3 ,7 ]
Li, Zihai [2 ,3 ,7 ]
机构
[1] Ohio State Univ, Coll Med, Columbus, OH 43210 USA
[2] Ohio State Univ, Comprehens Canc Ctr, Pelotonia Inst Immunooncol, Arthur G James Canc Hosp, Columbus, OH 43210 USA
[3] Ohio State Univ, Richard J Solove Res Inst, Columbus, OH 43210 USA
[4] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Nationwide Childrens Hosp, Battelle Ctr Math Med, Abigail Wexner Res Inst, Columbus, OH USA
[6] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[7] Ohio State Univ, Div Med Oncol, Dept Internal Med, Coll Med, Columbus, OH 43210 USA
[8] Ohio State Univ, Coll Med, Dept Pediat, Columbus, OH 43210 USA
[9] Ohio State Univ, Coll Med, Div Hematol, Columbus, OH 43210 USA
[10] Hauptman Woodward Med Res Inst, New York, NY USA
关键词
immunotherapy; CD8-positive T-lymphocytes; programmed cell death 1 receptor; transplantation immunology; TGF-BETA; EXPRESSION; TGF-BETA-1; RECEPTOR; TOLERANCE;
D O I
10.1136/jitc-2022-005433
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor beta (TGF beta) in the tumor microenvironment (TME). TGF beta drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8(+) T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGF beta 1, TGF beta 2 and TGF beta 3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. Methods We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. Results We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGF beta isoforms. PIIO-1 lacks recognition of GARP-TGF beta complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP(+) and GARP(-) cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGF beta signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8(+) T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. Conclusion GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGF beta activation, enhance CD8(+) T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] PD-1 expression on Foxp3+ Treg cells modulates CD8+ T cell function in prostatic tumor microenvironment
    Kumar, Sanjay
    Malik, Shalie
    Singh, Udai P.
    Ponnazhagan, Selvarangan
    Scissum-Gunn, Karyn
    Manne, Upender
    Mishra, Manoj K.
    JOURNAL OF IMMUNOLOGY, 2017, 198 (01):
  • [22] PD-1 blockade augments humoral immunity through ICOS-mediated CD4+ T cell instruction
    Zhang, Meiyu
    Xia, Liliang
    Yang, Yi
    Liu, Shuai
    Ji, Ping
    Wang, Shujun
    Chen, Yingying
    Liu, Zhiduo
    Zhang, Yanyun
    Lu, Shun
    Wang, Ying
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2019, 66 : 127 - 138
  • [23] Rewiring CD8+ T cell responses to PD-1 immune checkpoint blockade in PDAC via the inhibitory receptor PSGL-1
    Hope, Jennifer L.
    Zhang, Yijuan
    Hetrick, Hannah A. F.
    Hernandez, Evelyn S. Sanchez
    Romano, Gabriele
    Roy, Sreeja
    Lin, Michelle
    Palete, Ashley B.
    Maganti, Swetha
    Otero, Dennis C.
    Byrne, Katelyn T.
    Commisso, Cosimo
    Bradley, Linda M.
    CANCER RESEARCH, 2024, 84 (17)
  • [24] Mitoxantrone in combination with TGFß and PD-1 blockade remodels the tumor immune landscape enhancing neuroblastoma antitumor immunity
    Lucarini, Valeria
    Melaiu, Ombretta
    D'Amico, Silvia
    Pastorino, Fabio
    Tempora, Patrizia
    De Ninno, Adele
    Businaro, Luca
    Ponzoni, Mirco
    Locatelli, Franco
    Fruci, Doriana
    CANCER RESEARCH, 2022, 82 (12)
  • [25] Cutting Edge: Targeting Thrombocytes to Rewire Anticancer Immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 Blockade
    Riesenberg, Brian P.
    Ansa-Addo, Ephraim A.
    Gutierrez, Jennifer
    Timmers, Cynthia D.
    Liu, Bei
    Li, Zihai
    JOURNAL OF IMMUNOLOGY, 2019, 203 (05): : 1105 - 1110
  • [26] HIF1α or HIF2α: Enhancing CD8+ T-cell Fitness for Antitumor Immunity
    Chen, Jin
    CANCER IMMUNOLOGY RESEARCH, 2021, 9 (04) : 364 - 364
  • [27] Lymphodepletion induces T cell homeostatic proliferation and augments antitumor effects of PD-1/PD-L1 blockade therapy
    Arita, Masashi
    Watanabe, Satoshi
    Miho, Takahashi
    Sato, Miyuki
    Ohtsubo, Aya
    Ichikawa, Kosuke
    Kondo, Rie
    Abe, Tetsuya
    Tanaka, Junta
    Koya, Toshiyuki
    Kikuchi, Toshiaki
    CANCER RESEARCH, 2017, 77
  • [28] Bispecific Targeting of PD-1 and PD-L1 Enhances T-cell Activation and Antitumor Immunity
    Kotanides, Helen
    Li, Yiwen
    Malabunga, Maria
    Carpenito, Carmine
    Eastman, Scott W.
    Shen, Yang
    Wang, George
    Inigo, Ivan
    Surguladze, David
    Pennello, Anthony L.
    Persaud, Krishnadatt
    Hindi, Sagit
    Topper, Michael
    Chen, Xinlei
    Zhang, Yiwei
    Bulaon, Danielle K.
    Bailey, Tim
    Lao, Yanbin
    Han, Bing
    Torgerson, Stacy
    Chin, Darin
    Sonyi, Andreas
    Haidar, Jaafar N.
    Novosiadly, Ruslan D.
    Moxham, Christopher M.
    Plowman, Gregory D.
    Ludwig, Dale L.
    Kalos, Michael
    CANCER IMMUNOLOGY RESEARCH, 2020, 8 (10) : 1300 - 1310
  • [29] PD-1 modulation promotes antitumor immunity by improving metabolic fitness of both PD-1+and PD-1-CD8+T cells in the tumor
    Pauken, Kristen E.
    Juneja, Vikram R.
    Sage, Peter T.
    LaFleur, Martin W.
    Kuchroo, Juhi R.
    Ringel, Alison
    Ron-Harel, Noga
    Maleri, Seth P.
    Freeman, Gordon J.
    Chevrier, Nicolas
    Haigis, Marcia C.
    Sharpe, Arlene H.
    CANCER IMMUNOLOGY RESEARCH, 2018, 6 (09)
  • [30] Combined blockade of TGF-β and PD-1 restores the function of tumor-infiltrating CD8+ T cells in glioblastoma
    Kim, A. R.
    Park, J.
    Kang, S-G.
    Moon, J. H.
    Kim, E. H.
    Park, S-H.
    Chang, J. H.
    Shin, E-C.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 1733 - 1733