On the arithmetic of abelian varieties

被引:2
|
作者
Saidi, Mohamed [1 ]
Tamagawa, Akio [2 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Harrison Bldg,North Pk Rd, Exeter EX4 4QF, Devon, England
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
FIELDS;
D O I
10.1515/crelle-2018-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some new results on the arithmetic of abelian varieties over function fields of one variable over finitely generated (infinite) fields. Among other things, we introduce certain new natural objects "discrete Selmer groups" and "discrete Shafarevich-Tate groups", and prove that they arc finitely generated Z-modulcs. Further, we prove that in the isotrivial case, the discrete Shafarevich-Tate group vanishes and the discrete Selmer group coincides with the Mordell-Weil group. One of the key ingredients to prove these results is a new specialisation theorem for first Galois cohomology groups, which generalises Neron's specialisation theorem for rational points of abelian varieties.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [21] Logarithmic abelian varieties
    Kajiwara, Takeshi
    Kato, Kazuya
    Nakayama, Chikara
    NAGOYA MATHEMATICAL JOURNAL, 2008, 189 : 63 - 138
  • [22] Semiregularity and Abelian Varieties
    Murty, V. Kumar
    MOTIVES AND ALGEBRAIC CYCLES: A CELEBRATION IN HONOUR OF SPENCER J. BLOCH, 2009, 56 : 293 - 305
  • [23] On torsion in abelian varieties
    Kamienny, S
    Wetherell, JL
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (05) : 1675 - 1678
  • [24] Periods of abelian varieties
    Milne, JS
    COMPOSITIO MATHEMATICA, 2004, 140 (05) : 1149 - 1175
  • [25] ABELIAN BY NILPOTENT VARIETIES
    VAUGHANLEE, MR
    QUARTERLY JOURNAL OF MATHEMATICS, 1970, 21 (82): : 193 - +
  • [26] SPLITTING OF ABELIAN VARIETIES
    Murty, V. Kumar
    Zong, Ying
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 511 - 519
  • [27] ON A CHARACTERIZATION OF ABELIAN VARIETIES
    ASAEDA, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1963, 39 (03): : 142 - &
  • [28] Characterization of abelian varieties
    Jungkai A. Chen
    Christopher D. Hacon
    Inventiones mathematicae, 2001, 143 : 435 - 447
  • [29] On syzygies of Abelian varieties
    Rubei, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2569 - 2579
  • [30] Characterization of abelian varieties
    Chen, JA
    Hacon, CD
    INVENTIONES MATHEMATICAE, 2001, 143 (02) : 435 - 447