Analyzing Dynamical Brain Functional Connectivity as Trajectories on Space of Covariance Matrices

被引:22
|
作者
Dai, Mengyu [1 ]
Zhang, Zhengwu [2 ]
Srivastava, Anuj [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
关键词
Trajectory; Covariance matrices; Measurement; Functional magnetic resonance imaging; Task analysis; Time series analysis; Symmetric matrices; Dynamic functional connectivity; fMRI pattern classification; covariance trajectory; Riemmanian metric; dimension reduction; PARCELLATION; NETWORKS;
D O I
10.1109/TMI.2019.2931708
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Human brain functional connectivity (FC) is often measured as the similarity of functional MRI responses across brain regions when a brain is either resting or performing a task. This paper aims to statistically analyze the dynamic nature of FC by representing the collective time-series data, over a set of brain regions, as a trajectory on the space of covariance matrices, or symmetric-positive definite matrices (SPDMs). We use a recently developed metric on the space of SPDMs for quantifying differences across FC observations, and for clustering and classification of FC trajectories. To facilitate large scale and high-dimensional data analysis, we propose a novel, metric-based dimensionality reduction technique to reduce data from large SPDMs to small SPDMs. We illustrate this comprehensive framework using data from the Human Connectome Project (HCP) database for multiple subjects and tasks, with task classification rates that match or outperform state-of-the-art techniques.
引用
收藏
页码:611 / 620
页数:10
相关论文
共 50 条
  • [31] Differential Covariance: A New Method to Estimate Functional Connectivity in fMRI
    Lin, Tiger W.
    Chen, Yusi
    Bukhari, Qasim
    Krishnan, Giri P.
    Bazhenov, Maxim
    Sejnowski, Terrence J.
    NEURAL COMPUTATION, 2020, 32 (12) : 2339 - 2371
  • [32] On development of functional brain connectivity in the young brain
    Hoff, G. E. Anna-Jasmijn
    Van den Heuvel, M. P.
    Benders, Manon J. N. L.
    Kersbergen, Karina J.
    De Vries, L. S.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
  • [33] Functional Covariance Connectivity of Gray and White Matter in Olfactory-Related Brain Regions in Parkinson's Disease
    Wang, Yiqing
    Wei, Hongyu
    Du, Shouyun
    Yan, Hongjie
    Li, Xiaojing
    Wu, Yijie
    Zhu, Jianbing
    Wang, Yi
    Cai, Zenglin
    Wang, Nizhuan
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [34] Quantum entangled connectivity and functional connectivity of human brain
    Zhai, You
    Qiu, Linjie
    He, Chenxiang
    Wang, Lina
    Zhai, Jian
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (08)
  • [35] INFERENCE OF FUNCTIONAL CONNECTIVITY FROM STRUCTURAL BRAIN CONNECTIVITY
    Deligianni, Fani
    Robinson, Emma C.
    Beckmann, Christian F.
    Sharp, David
    Edwards, A. David
    Rueckert, Daniel
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1113 - 1116
  • [36] Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization
    Brier, Matthew R.
    Mitra, Anish
    McCarthy, John E.
    Ances, Beau M.
    Snyder, Abraham Z.
    NEUROIMAGE, 2015, 121 : 29 - 38
  • [37] Dynamical r matrices and chiral WZNW phase space
    Fehér, L
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1023 - 1027
  • [38] Dynamical r matrices and chiral WZNW phase space
    L. Fehér
    Physics of Atomic Nuclei, 2002, 65 : 1023 - 1027
  • [39] On the moduli space of classical dynamical r-matrices
    Etingof, P
    Schiffmann, O
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (1-2) : 157 - 170
  • [40] Analyzing effective connectivity with functional magnetic resonance imaging
    Stephan, Klaas Enno
    Friston, Karl J.
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2010, 1 (03) : 446 - 459