Walls of Nonlinear Sigma Models on SO(2N)/U(N) with N > 3

被引:0
|
作者
Lee, B. -H. [1 ]
Park, C. [2 ,3 ]
Shin, Su. [3 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[3] Asia Pacific Ctr Theoret Phys, Pohang 790784, South Korea
关键词
Nonlinear Sigma Model (NLSMs); Bogoliubov Laboratory; Simple Root Generators; Wall Elements; Penetrable Walls;
D O I
10.1134/S1063779618050271
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study walls of mass-deformed Kahler nonlinear sigma models on SO(2N)/U(N). This article is prepared for the proceedings of International Workshop "Supersymmetries and Quantum Symmetries-SQS' 2017", which was held in Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna from 31 July to 5 August, 2017. The talk was based on [1].
引用
收藏
页码:929 / 931
页数:3
相关论文
共 50 条
  • [31] FAMILIES OF VALUES OF THE EXCEDENT FUNCTION sigma(n) - 2n
    Dean, Raven
    Erdman, Rick
    Klyve, Dominic
    Lycette, Emily
    Pidde, Melissa
    Wheel, Derek
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2015, 27 (01) : 37 - 46
  • [32] A CLASS OF SOLUTIONS OF THE EQUATION SIGMA(N) = 2N + T
    ROBBINS, N
    FIBONACCI QUARTERLY, 1980, 18 (02): : 137 - 147
  • [33] A JACOBI EQUATION ON THE COSET MANIFOLD SO(2N)/U(N) AND THE QUASIPARTICLE RPA EQUATION
    NISHIYAMA, S
    PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 100 - 112
  • [34] The KO-cohomology ring of SU(2n)/SO(2n)
    Watanabe, T
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 91 - 97
  • [35] Duality in N = 2 nonlinear sigma-models
    Penati, S
    Refolli, A
    Van Proeyen, A
    Zanon, D
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1999, 47 (1-3): : 263 - 269
  • [36] THE CHERN CHARACTER OF THE SYMMETRICAL SPACE SU(2N)/SO(2N)
    WATANABE, T
    OSAKA JOURNAL OF MATHEMATICS, 1994, 31 (04) : 923 - 938
  • [37] THE EQUIVALENCE OF SP(2N) AND SO(-2N) GAUGE-THEORIES
    MKRTCHYAN, RL
    PHYSICS LETTERS B, 1981, 105 (2-3) : 174 - 176
  • [38] EVALUATION AND REPRESENTATION OF SECONDARY SPECTRA OF (N,2N) AND (N,3N) IN U-238
    SEGEV, M
    CANER, M
    YIFTAH, S
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 22 (NOV16): : 679 - 680
  • [39] Spherical functions on U(2n)/(U(n) x U(n)) and hermitian Siegel series
    Hironaka, Yumiko
    GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES, 2012, 7 : 120 - 159
  • [40] SO(2N) GRAND UNIFICATION IN AN SU(N) BASIS
    MOHAPATRA, RN
    SAKITA, B
    PHYSICAL REVIEW D, 1980, 21 (04): : 1062 - 1066