Adapted GooLeNet for Visual Question Answering

被引:2
|
作者
Huang, Jie [1 ]
Hu, Yue [1 ]
Yang, Weilong [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
visual question answering; Adapted GooLeNet; MUTAN;
D O I
10.1109/ICMCCE.2018.00132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual Question Answering (VQA) aims at answering a question about an image. In this work, we introduce an effective architecture --Adapted GooLeNet (AG)-- into a typical VQA method MUTAN instead of LSTM for question features capturing. This improvement can capture more levels of language granularities in parallel, because of the various sizes of filters in AG. The empirical study on the benchmark dataset of VQA demonstrates that capturing sentence features on different levels of granularities benefit sentence modelling by utilizing AG.
引用
收藏
页码:603 / 606
页数:4
相关论文
共 50 条
  • [31] Scene Text Visual Question Answering
    Biten, Ali Furkan
    Tito, Ruben
    Mafla, Andres
    Gomez, Lluis
    Rusinol, Marcal
    Valveny, Ernest
    Jawahar, C. V.
    Karatzas, Dimosthenis
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4290 - 4300
  • [32] Semantically Guided Visual Question Answering
    Zhao, Handong
    Fan, Quanfu
    Gutfreund, Dan
    Fu, Yun
    [J]. 2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1852 - 1860
  • [33] Multitask Learning for Visual Question Answering
    Ma, Jie
    Liu, Jun
    Lin, Qika
    Wu, Bei
    Wang, Yaxian
    You, Yang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (03) : 1380 - 1394
  • [34] Visual Question Answering for Intelligent Interaction
    Gao, Panpan
    Sun, Hanxu
    Chen, Gang
    Wang, Ruiquan
    Li, Minggang
    [J]. MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [35] Differential Networks for Visual Question Answering
    Wu, Chenfei
    Liu, Jinlai
    Wang, Xiaojie
    Li, Ruifan
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8997 - 9004
  • [36] Fusing Attention with Visual Question Answering
    Burt, Ryan
    Cudic, Mihael
    Principe, Jose C.
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 949 - 953
  • [37] Document Collection Visual Question Answering
    Tito, Ruben
    Karatzas, Dimosthenis
    Valveny, Ernest
    [J]. DOCUMENT ANALYSIS AND RECOGNITION - ICDAR 2021, PT II, 2021, 12822 : 778 - 792
  • [38] LANGUAGE AND VISUAL RELATIONS ENCODING FOR VISUAL QUESTION ANSWERING
    Liu, Fei
    Liu, Jing
    Fang, Zhiwei
    Lu, Hanqing
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3307 - 3311
  • [39] Visual Question Answering using Explicit Visual Attention
    Lioutas, Vasileios
    Passalis, Nikolaos
    Tefas, Anastasios
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [40] QUES-TO-VISUAL GUIDED VISUAL QUESTION ANSWERING
    Wu, Xiangyu
    Lu, Jianfeng
    Li, Zhuanfeng
    Xiong, Fengchao
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4193 - 4197