Stochastic Gradient Descent on a Tree: an Adaptive and Robust Approach to Stochastic Convex Optimization

被引:0
|
作者
Vakili, Sattar [1 ]
Salgia, Sudeep [2 ]
Zhao, Qing [2 ]
机构
[1] Prowlerio, Cambridge, England
[2] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/allerton.2019.8919740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Online minimization of an unknown convex function over the interval [0, 1] is considered under first-order stochastic bandit feedback, which returns a random realization of the gradient of the function at each query point. Without knowing the distribution of the random gradients, a learning algorithm sequentially chooses query points with the objective of minimizing regret defined as the expected cumulative loss of the function values at the query points in excess to the minimum value of the function. An approach based on devising a biased random walk on an infinite-depth binary tree constructed through successive partitioning of the domain of the function is developed. Each move of the random walk is guided by a sequential test based on confidence bounds on the empirical mean constructed using the law of the iterated logarithm. With no tuning parameters, this learning algorithm is robust to heavy-tailed noise with infinite variance and adaptive to unknown function characteristics (specifically, convex, strongly convex, and nonsmooth). It achieves the corresponding optimal regret orders (up to a root log T or a log log T factor) in each class of functions and offers better or matching regret orders than the classical stochastic gradient descent approach which requires the knowledge of the function characteristics for tuning the sequence of step-sizes.
引用
收藏
页码:432 / 438
页数:7
相关论文
共 50 条
  • [41] Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization
    A. V. Nazin
    Automation and Remote Control, 2018, 79 : 78 - 88
  • [42] On the Convergence of (Stochastic) Gradient Descent with Extrapolation for Non-Convex Minimization
    Xu, Yi
    Yuan, Zhuoning
    Yang, Sen
    Jin, Rong
    Yang, Tianbao
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4003 - 4009
  • [43] Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm
    Yuan, Deming
    Ho, Daniel W. C.
    Xu, Shengyuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2344 - 2357
  • [44] FTSGD: An Adaptive Stochastic Gradient Descent Algorithm for Spark MLlib
    Zhang, Hong
    Liu, Zixia
    Huang, Hai
    Wang, Liqiang
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 828 - 835
  • [45] Unforgeability in Stochastic Gradient Descent
    Baluta, Teodora
    Nikolic, Ivica
    Jain, Racchit
    Aggarwal, Divesh
    Saxena, Prateek
    PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023, 2023, : 1138 - 1152
  • [46] Preconditioned Stochastic Gradient Descent
    Li, Xi-Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1454 - 1466
  • [47] A Stochastic Gradient Descent Algorithm Based on Adaptive Differential Privacy
    Deng, Yupeng
    Li, Xiong
    He, Jiabei
    Liu, Yuzhen
    Liang, Wei
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT II, 2022, 461 : 133 - 152
  • [48] Stochastic parallel gradient descent algorithm for adaptive optics system
    Ma H.
    Zhang P.
    Zhang J.
    Fan C.
    Wang Y.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (06): : 1206 - 1210
  • [49] Stochastic gradient descent tricks
    Bottou, Léon
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 421 - 436
  • [50] Stochastic Reweighted Gradient Descent
    El Hanchi, Ayoub
    Stephens, David A.
    Maddison, Chris J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,