BOUNDING COCHORDAL COVER NUMBER OF GRAPHS VIA VERTEX STRETCHING

被引:0
|
作者
Fander, M. R. [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
来源
关键词
Castelnuovo-Mumford regularity; induced matching number; cochordal cover number; BIPARTITE GRAPHS; MATCHINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases at most two. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipartite or weakly chordal graph.
引用
收藏
页码:679 / 685
页数:7
相关论文
共 50 条
  • [41] KOSZULNESS OF VERTEX COVER ALGEBRAS OF BIPARTITE GRAPHS
    Rinaldo, Giancarlo
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2249 - 2259
  • [42] On bounding the chromatic number of L-graphs
    McGuinness, S
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 179 - 187
  • [43] Approximated vertex cover for graphs with perfect matchings
    Imamura, Tomokazu
    Iwama, Kazuo
    Tsukiji, Tatsuie
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (08) : 2405 - 2410
  • [44] On the chromatic vertex stability number of graphs
    Akbari, Saieed
    Beikmohammadi, Arash
    Klavzar, Sandi
    Movarraei, Nazanin
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [45] Approximated vertex cover for graphs with perfect matchings
    Imamura, T
    Iwama, K
    Tsukiji, T
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 132 - 142
  • [46] On Complexity of Total Vertex Cover on Subcubic Graphs
    Poon, Sheung-Hung
    Wang, Wei-Lin
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 514 - 527
  • [47] Domination Number of Vertex Amalgamation of Graphs
    Wahyuni, Y.
    Utoyo, M. I.
    Slamin
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [48] Domination cover number of graphs
    Meybodi, M. Alambardar
    Hooshmandasl, M. R.
    Sharifani, P.
    Shakiba, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [49] The cover pebbling number of graphs
    Crull, B
    Cundiff, T
    Feltman, P
    Hurlbert, GH
    Pudwell, L
    Szaniszlo, Z
    Tuza, Z
    DISCRETE MATHEMATICS, 2005, 296 (01) : 15 - 23
  • [50] The vertex (edge) independence number, vertex (edge) cover number and the least eigenvalue of a graph
    Tan, Ying-Ying
    Fan, Yi-Zheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (04) : 790 - 795