The origin of the slow relaxation and of the dynamic heterogeneity is studied for an orientationally disordered crystal, orthocarborane, composed of quasi-icosahedrally shaped molecules. Multidimensional deuteron magnetic resonance reveals that large jump angles dominate their complex, anisotropic reorientational motion. It involves a sequence of small-angle tilts about locally preferred axes as well as symmetry adapted threefold jumps. The intrinsic dynamics of this glassy crystal is nonexponential and can be fully accounted for in terms of the tilt and jump motion.