Next stop for the CRISPR revolution: RNA-guided epigenetic regulators

被引:53
|
作者
Vora, Suhani [1 ,2 ,3 ]
Tuttle, Marcelle [1 ]
Cheng, Jenny [1 ]
Church, George [1 ,2 ]
机构
[1] Ctr Life Sci Boston, Wyss Inst Biologically Inspired Design, Boston, MA USA
[2] Harvard Med Sch, Dept Genet, 77 Ave Louis Pasteur,Room 238, Boston, MA 02115 USA
[3] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
activation; CRISPR-associated protein 9; clustered regularly interspaced short palindromic repeats; epigenetic; repression; transcription; GENE-EXPRESSION; IN-VIVO; TRANSCRIPTION FACTORS; ENDOGENOUS GENES; DNA-BINDING; STEM-CELLS; ACTIVATION; CAS9; SYSTEM; REPRESSION;
D O I
10.1111/febs.13768
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins offer a breakthrough platform for cheap, programmable, and effective sequence-specific DNA targeting. The CRISPR-Cas system is naturally equipped for targeted DNA cutting through its native nuclease activity. As such, groups researching a broad spectrum of biological organisms have quickly adopted the technology with groundbreaking applications to genomic sequence editing in over 20 different species. However, the biological code of life is not only encoded in genetics but also in epigenetics as well. While genetic sequence editing is a powerful ability, we must also be able to edit and regulate transcriptional and epigenetic code. Taking inspiration from work on earlier sequence-specific targeting technologies such as zinc fingers (ZFs) and transcription activator-like effectors (TALEs), researchers quickly expanded the CRISPR-Cas toolbox to include transcriptional activation, repression, and epigenetic modification. In this review, we highlight advances that extend the CRISPR-Cas toolkit for transcriptional and epigenetic regulation, as well as best practice guidelines for these tools, and a perspective on future applications.
引用
收藏
页码:3181 / 3193
页数:13
相关论文
共 50 条
  • [21] The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea
    Karginov, Fedor V.
    Hannon, Gregory J.
    MOLECULAR CELL, 2010, 37 (01) : 7 - 19
  • [22] Structural basis for CRISPR RNA-guided DNA recognition by Cascade
    Matthijs M Jore
    Magnus Lundgren
    Esther van Duijn
    Jelle B Bultema
    Edze R Westra
    Sakharam P Waghmare
    Blake Wiedenheft
    Ümit Pul
    Reinhild Wurm
    Rolf Wagner
    Marieke R Beijer
    Arjan Barendregt
    Kaihong Zhou
    Ambrosius P L Snijders
    Mark J Dickman
    Jennifer A Doudna
    Egbert J Boekema
    Albert J R Heck
    John van der Oost
    Stan J J Brouns
    Nature Structural & Molecular Biology, 2011, 18 : 529 - 536
  • [23] CRISPR RNA-guided autonomous delivery of Cas9
    Wilkinson, Royce A.
    Martin, Coleman
    Nemudryi, Artem A.
    Wiedenheft, Blake
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (01) : 14 - 24
  • [24] Structural basis for CRISPR RNA-guided DNA recognition by Cascade
    Jore, Matthijs M.
    Lundgren, Magnus
    van Duijn, Esther
    Bultema, Jelle B.
    Westra, Edze R.
    Waghmare, Sakharam P.
    Wiedenheft, Blake
    Pul, Uemit
    Wurm, Reinhild
    Wagner, Rolf
    Beijer, Marieke R.
    Barendregt, Arjan
    Zhou, Kaihong
    Snijders, Ambrosius P. L.
    Dickman, Mark J.
    Doudna, Jennifer A.
    Boekema, Egbert J.
    Heck, Albert J. R.
    van der Oost, John
    Brouns, Stan J. J.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (05) : 529 - U141
  • [25] Efficient Genome Editing by RNA-guided CRISPR Nucleases in Soybean
    Ye, Xudong
    Xu, Jianping
    Rymarquis, Linda
    Chen, Yurong
    Wang, Dafu
    Kouranov, Andrei
    Saltarikos, Annie
    Gaeta, Bob
    Salvador, Sara
    Gilbertson, Larry
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 : S18 - S18
  • [26] Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease
    Liu, Xiaolong
    Hussain, Mubashir
    Dai, Jianguo
    Li, Yonghong
    Zhang, Lijun
    Yang, Jian
    Ali, Zeeshan
    He, Nongyue
    Tang, Yongjun
    BIOLOGICAL PROCEDURES ONLINE, 2022, 24 (01)
  • [27] The CRISPR road: from bench to bedside on an RNA-guided path
    Garcia-Bloj, Benjamin
    Moses, Colette
    Blancafort, Pilar
    ANNALS OF TRANSLATIONAL MEDICINE, 2015, 3 (13)
  • [28] Genotyping with CRISPR-Cas-derived RNA-guided endonucleases
    Kim, Jong Min
    Kim, Daesik
    Kim, Seokjoong
    Kim, Jin-Soo
    NATURE COMMUNICATIONS, 2014, 5
  • [29] RNA-guided DNA insertion with CRISPR-associated transposases
    Strecker, Jonathan
    Ladha, Alim
    Gardner, Zachary
    Schmid-Burgk, Jonathan L.
    Makarova, Kira S.
    Koonin, Eugene V.
    Zhang, Feng
    SCIENCE, 2019, 365 (6448) : 48 - +
  • [30] Structures of the holo CRISPR RNA-guided transposon integration complex
    Jung-Un Park
    Amy Wei-Lun Tsai
    Alexandrea N. Rizo
    Vinh H. Truong
    Tristan X. Wellner
    Richard D. Schargel
    Elizabeth H. Kellogg
    Nature, 2023, 613 : 775 - 782