Federated Learning over Wireless Networks: A Band-limited Coordinated Descent Approach

被引:25
|
作者
Zhang, Junshan [1 ]
Li, Na [2 ]
Dedeoglu, Mehmet [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1109/INFOCOM42981.2021.9488818
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data. The unreliable nature of wireless connectivity, together with constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Thus motivated, we propose SGD-based bandlimited coordinate descent algorithms for such settings. Specifically, for the wireless edge employing over-the-air computing, a common subset of k-coordinates of the gradient updates across edge devices are selected by the receiver in each iteration, and then transmitted simultaneously over k sub-carriers, each experiencing time-varying channel conditions. We characterize the impact of communication error and compression, in terms of the resulting gradient bias and mean squared error, on the convergence of the proposed algorithms. We then study learning-driven communication error minimization via joint optimization of power allocation and learning rates. Our findings reveal that optimal power allocation across different sub-carriers should take into account both the gradient values and channel conditions, thus generalizing the widely used water-filling policy. We also develop sub-optimal distributed solutions amenable to implementation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Communication Efficient Federated Learning With Energy Awareness Over Wireless Networks
    Jin, Richeng
    He, Xiaofan
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5204 - 5219
  • [42] Secure Federated Learning over Wireless Communication Networks with Model Compression
    DING Yahao
    Mohammad SHIKH-BAHAEI
    YANG Zhaohui
    HUANG Chongwen
    YUAN Weijie
    ZTE Communications, 2023, 21 (01) : 46 - 54
  • [43] Federated Learning in Wireless Networks via Over-the-Air Computations
    Oksuz, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4379 - 4386
  • [44] Communication-Efficient Federated Multitask Learning Over Wireless Networks
    Ma, Haoyu
    Guo, Huayan
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 609 - 624
  • [45] Digital versus Analog Transmissions for Federated Learning over Wireless Networks
    Yao, Jiacheng
    Xu, Wei
    Yang, Zhaohui
    You, Xiaohu
    Bennis, Mehdi
    Poor, H. Vincent
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 1047 - 1052
  • [46] Convergence Analysis and System Design for Federated Learning Over Wireless Networks
    Wan, Shuo
    Lu, Jiaxun
    Fan, Pingyi
    Shao, Yunfeng
    Peng, Chenghui
    Letaief, Khaled B.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3622 - 3639
  • [47] Federated Learning Over Multihop Wireless Networks With In-Network Aggregation
    Chen, Xianhao
    Zhu, Guangyu
    Deng, Yiqin
    Fang, Yuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 4622 - 4634
  • [48] Convergence Time Minimization for Federated Reinforcement Learning over Wireless Networks
    Wang, Sihua
    Chen, Mingzhe
    Yin, Changchuan
    Poor, H. Vincent
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 246 - 251
  • [49] Adaptive Heterogeneous Client Sampling for Federated Learning Over Wireless Networks
    Luo, Bing
    Xiao, Wenli
    Wang, Shiqiang
    Huang, Jianwei
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9663 - 9677
  • [50] Resource Management and Fairness for Federated Learning over Wireless Edge Networks
    Balakrishnan, Ravikumar
    Akdeniz, Mustafa
    Dhakal, Sagar
    Himayat, Nageen
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,