Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device

被引:3
|
作者
Zhou, Shu [1 ]
Heidbrink, W. W. [1 ]
Boehmer, H. [1 ]
McWilliams, R. [1 ]
Carter, T. A. [2 ]
Vincena, S. [2 ]
Tripathi, S. K. P. [2 ]
Van Compernolle, B. [2 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
CONFINEMENT; BEHAVIOR;
D O I
10.1063/1.3695341
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (delta n/n similar to delta phi/kT(e) similar to 0.5, f similar to 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E x B drift through biasing the obstacle and by modification of the axial magnetic fields (B-z) and the plasma species. Cross-field plasma transport is suppressed with small bias and large B-z and is enhanced with large bias and small B-z. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (rho(fast)/rho(s) similar to 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (E-r) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static E-r are evaluated both analytically and numerically. Simulation results indicate that the E-r induced transport is predominately convective. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695341]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] PLASMA POTENTIAL DISTRIBUTION IN THE PRESENCE OF ELECTROSTATIC ION-CYCLOTRON TURBULENCE
    LANG, A
    BOEHMER, H
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 984 - 984
  • [22] Statistical properties of edge plasma turbulence in the Large Helical Device
    Dewhurst, J. M.
    Hnat, B.
    Ohno, N.
    Dendy, R. O.
    Masuzaki, S.
    Morisaki, T.
    Komori, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
  • [23] Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device
    Ida, K.
    Yoshinuma, M.
    Osakabe, M.
    Nagaoka, K.
    Yokoyama, M.
    Funaba, H.
    Suzuki, C.
    Ido, T.
    Shimizu, A.
    Murakami, I.
    Tamura, N.
    Kasahara, H.
    Takeiri, Y.
    Ikeda, K.
    Tsumori, K.
    Kaneko, O.
    Morita, S.
    Goto, M.
    Tanaka, K.
    Narihara, K.
    Minami, T.
    Yamada, I.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [24] OPTICAL INVESTIGATIONS OF ELECTROSTATIC TURBULENCE IN PLASMA
    BENYOSEF, N
    RUBIN, AG
    PHYSICS LETTERS A, 1970, A 33 (04) : 222 - &
  • [25] Multifractality in plasma edge electrostatic turbulence
    Rodrigues Neto, C.
    Guimares-Filho, Z. O.
    Caldas, I. L.
    Nascimento, I. C.
    Kuznetsov, Yu. K.
    PHYSICS OF PLASMAS, 2008, 15 (08)
  • [26] Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence
    Sanchez, R.
    Newman, D. E.
    Leboeuf, J. -N.
    Decyk, V. K.
    Carreras, B. A.
    PHYSICAL REVIEW LETTERS, 2008, 101 (20)
  • [27] Dynamic transport study of heat and momentum transport in a plasma with improved ion confinement in the Large Helical Device
    Lee, H.
    Ida, K.
    Osakabe, M.
    Yokoyama, M.
    Suzuki, C.
    Nagaoka, K.
    Seki, R.
    Yoshinuma, M.
    Tamura, N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (01)
  • [28] Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the Large Plasma Device
    Carter, T. A.
    Maggs, J. E.
    PHYSICS OF PLASMAS, 2009, 16 (01)
  • [29] Ion cyclotron parametric turbulence and anomalous convective transport of the inhomogeneous plasma in front of the fast wave antenna
    Mikhailenko, V. S.
    Mikhailenko, V. V.
    Lee, Hae June
    PHYSICS OF PLASMAS, 2021, 28 (04)
  • [30] Plasma turbulence, suprathermal ion dynamics and code validation on the basic plasma physics device TORPEX
    Furno, I.
    Avino, F.
    Bovet, A.
    Diallo, A.
    Fasoli, A.
    Gustafson, K.
    Iraji, D.
    Labit, B.
    Loizu, J.
    Mueller, S. H.
    Plyushchev, G.
    Podesta, M.
    Poli, F. M.
    Ricci, P.
    Theiler, C.
    JOURNAL OF PLASMA PHYSICS, 2015, 81