Ride-Sharing Matching Under Travel Time Uncertainty Through Data-Driven Robust Optimization

被引:4
|
作者
Li, Xiaoming [1 ]
Gao, Jie [2 ]
Wang, Chun [1 ]
Huang, Xiao [3 ]
Nie, Yimin [4 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 1M8, Canada
[2] Univ Montreal, HEC Montreal, Montreal, PQ H3T 2A7, Canada
[3] Concordia Univ, Concordia John Molson Sch Business JMSB, Montreal, PQ H3G 1M8, Canada
[4] Ericsson Inc, Global Artificial Intelligence Accelerator GAIA I, Montreal, PQ H4R 2A4, Canada
基金
美国国家卫生研究院;
关键词
Uncertainty; Optimization; Costs; Vehicles; Stochastic processes; Heuristic algorithms; Delay effects; Data models; Predictive models; Data-driven robust optimization; gated recurrent units; mobility-on-demand; ride-sharing matching; time-series prediction; FRAMEWORK; PRICE;
D O I
10.1109/ACCESS.2022.3218700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In ride-sharing services, travel time uncertainty significantly impacts the quality of matching solutions for both the drivers and the riders. This paper studies a one-to-many ride-sharing matching problem where travel time between locations is uncertain. The goal is to generate robust ride-sharing matching solutions that minimize the total driver detour cost and the number of unmatched riders. To this end, we formulate the ride-sharing matching problem as a robust vehicle routing problem with time window (RVRPTW). To effectively capture the travel time uncertainty, we propose a deep learning-based data-driven approach that can dynamically estimate the uncertainty sets of travel times. Given the NP-hard nature of the optimization problem, we design a hybrid meta-heuristic algorithm that can handle large-scale instances in a time-efficient manner. To evaluate the performance of the proposed method, we conduct a set of numeric experiments based on real traffic data. The results confirm that the proposed approach outperforms the non-data-driven one in several important performance metrics, including a proper balance between robustness and inclusiveness of the matching solution. Specifically, by applying the proposed data-driven approach, the matching solution violation rate can be reduced up to 85.8%, and the valid serving rate can be increased up to 42.3% compared to the non-data-driven benchmark.
引用
收藏
页码:116931 / 116941
页数:11
相关论文
共 50 条
  • [21] A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty
    Ning, Chao
    You, Fengqi
    AICHE JOURNAL, 2017, 63 (10) : 4343 - 4369
  • [22] Data-driven distributionally robust optimization of shale gas supply chains under uncertainty
    Gao, Jiyao
    Ning, Chao
    You, Fengqi
    AICHE JOURNAL, 2019, 65 (03) : 947 - 963
  • [23] Data-driven robust optimization for minimum nitrogen oxide emission under process uncertainty
    Kim, Minsu
    Cho, Sunghyun
    Jang, Kyojin
    Hong, Seokyoung
    Na, Jonggeol
    Moon, Il
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [24] Operational optimization of industrial steam systems under uncertainty using data-Driven adaptive robust optimization
    Zhao, Liang
    Ning, Chao
    You, Fengqi
    AICHE JOURNAL, 2019, 65 (07)
  • [25] Working Time under Alternative Pay Contracts in the Ride-Sharing Industry
    Belloc, Filippo
    B E JOURNAL OF THEORETICAL ECONOMICS, 2022, 22 (01): : 281 - 295
  • [26] A data-driven matching algorithm for ride pooling problem
    Sahin, Ahmet
    Sevim, Ismail
    Albey, Erinc
    Guler, Mehmet Guray
    COMPUTERS & OPERATIONS RESEARCH, 2022, 140
  • [27] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [28] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    Mathematical Programming, 2018, 167 : 235 - 292
  • [29] Data-driven two-stage distributionally robust optimization for refinery planning under uncertainty
    He, Wangli
    Zhao, Jinmin
    Zhao, Liang
    Li, Zhi
    Yang, Minglei
    Liu, Tianbo
    CHEMICAL ENGINEERING SCIENCE, 2023, 269
  • [30] Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty
    Shen, Feifei
    Zhao, Liang
    Wang, Meihong
    Du, Wenli
    Qian, Feng
    APPLIED ENERGY, 2022, 307