On some wave breaking for the nonlinear integrable shallow water wave equations

被引:7
|
作者
Wu, Xinglong [1 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Wave breaking; Blow-up scenario; The Camassa-Holm equation; The Degasperis-Procesi equation; The lifespan of solution; GLOBAL WEAK SOLUTIONS; BLOW-UP PHENOMENA; SHOCK-WAVES; EXISTENCE;
D O I
10.1016/j.na.2015.07.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
mathematicians. In this paper, based on the conservation laws and the blow-up scenario, some new blow-up phenomena are derived for the Camassa Holm equation and Degasperis Procesi equation, which have attracted much attention due to their structure. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:352 / 361
页数:10
相关论文
共 50 条
  • [31] Local-in-space wave breaking criteria for a shallow water wave equation
    Xiao, Honglin
    Zhou, Changtai
    Lai, Shaoyong
    APPLICABLE ANALYSIS, 2024, 103 (14) : 2660 - 2676
  • [32] On the inverse scattering approach for an integrable shallow water wave equation
    Constantin, A
    Lenells, J
    PHYSICS LETTERS A, 2003, 308 (5-6) : 432 - 436
  • [33] On the diffusive wave approximation of the shallow water equations
    Alonso, R.
    Santillana, M.
    Dawson, C.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2008, 19 : 575 - 606
  • [34] Traveling wave solutions for shallow water equations
    Abdelsalam, U. M.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2017, 2 (01) : 28 - 33
  • [35] On asymptotically equivalent shallow water wave equations
    Dullin, HR
    Gottwald, GA
    Holm, DD
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 190 (1-2) : 1 - 14
  • [36] BREAKING WAVE SOLUTIONS TO THE SECOND CLASS OF SINGULAR NONLINEAR TRAVELING WAVE EQUATIONS
    Li, Jibin
    Zhao, Xiaohua
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (04): : 1289 - 1306
  • [37] ON NONLINEAR WAVE EQUATIONS WITH BREAKING LOOP-SOLUTIONS
    Li, Jibin
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 519 - 537
  • [38] The nonlinear evolution equation on the shallow water wave
    Hou, YJ
    Lou, SL
    Xie, Q
    Yang, LG
    CHINESE SCIENCE BULLETIN, 1998, 43 (10): : 844 - 848
  • [39] Nonlinear effect of wave propagation in shallow water
    Li, RJ
    Wang, HJ
    CHINA OCEAN ENGINEERING, 1999, 13 (01) : 109 - 114
  • [40] Homoclinic structures for nonlinear integrable wave equations: New approach
    Doktorov, EV
    Rothos, VM
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 717 - 722