Cartesian to geodetic coordinates conversion on a triaxial ellipsoid

被引:21
|
作者
Ligas, Marcin [1 ]
机构
[1] Univ Sci & Technol, AGH, Dept Geomat, Fac Min Surveying & Environm Engn, Krakow, Poland
关键词
Triaxial ellipsoid; Coordinates transformation; System of nonlinear equations; TRANSFORMATION;
D O I
10.1007/s00190-011-0514-7
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new method of transforming Cartesian to geodetic (or planetographic) coordinates on a triaxial ellipsoid is presented. The method is based on simple reasoning coming from essentials of vector calculus. The reasoning results in solving a nonlinear system of equations for coordinates of the point being the projection of a point located outside or inside a triaxial ellipsoid along the normal to the ellipsoid. The presented method has been compared to a vector method of Feltens (J Geod 83:129-137, 2009) who claims that no other methods are available in the literature. Generally, our method turns out to be more accurate, faster and applicable to celestial bodies characterized by different geometric parameters. The presented method also fits to the classical problem of converting Cartesian to geodetic coordinates on the ellipsoid of revolution.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [11] TRIAXIAL GEODETIC COORDINATES
    OUELLETT.GA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1969, 50 (11): : 602 - &
  • [12] The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid
    Panou, G.
    Korakitis, R.
    JOURNAL OF APPLIED GEODESY, 2020, 14 (02) : 205 - 213
  • [13] Vector method to compute the Cartesian (X, Y, Z) to geodetic (φ, λ, h) transformation on a triaxial ellipsoid
    Feltens, J.
    JOURNAL OF GEODESY, 2009, 83 (02) : 129 - 137
  • [14] Cartesian to geodetic coordinates conversion on an oblate spheroid using the bisection method
    Panou, Georgios
    COMPUTERS & GEOSCIENCES, 2019, 133
  • [16] Explicitly computing geodetic coordinates from Cartesian coordinates
    Huaien Zeng
    Earth, Planets and Space, 2013, 65 : 291 - 298
  • [17] Explicitly computing geodetic coordinates from Cartesian coordinates
    Zeng, Huaien
    EARTH PLANETS AND SPACE, 2013, 65 (04): : 291 - 298
  • [18] Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates to Cartesian Coordinates (X, Y, Z)
    Ziggah, Yao Yevenyo
    Hu Youjian
    Yu, Xianyu
    Basommi, Laari Prosper
    MATHEMATICAL GEOSCIENCES, 2016, 48 (06) : 687 - 721
  • [19] Measurement and Evaluation of the Ellipsoid Deviation in Cartesian Coordinates
    Liu, Fei
    Liang, Lin
    Xu, Guanghua
    Hou, Chenggang
    Liu, Dan
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2020, 21 (11) : 2077 - 2088
  • [20] Measurement and Evaluation of the Ellipsoid Deviation in Cartesian Coordinates
    Fei Liu
    Lin Liang
    Guanghua Xu
    Chenggang Hou
    Dan Liu
    International Journal of Precision Engineering and Manufacturing, 2020, 21 : 2077 - 2088