Posterior convergence rate of a class of Dirichlet process mixture model for compositional data

被引:0
|
作者
Barrientos, Andres F. [1 ]
Jara, Alejandro [2 ]
Wehrhahn, Claudia [3 ]
机构
[1] Duke Univ, Dept Stat Sci, Box 90251, Durham, NC 27708 USA
[2] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306,Correo 22, Santiago, Chile
[3] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabilidad & Estadist, Apartado Postal 20-126, Mexico City 01000, DF, Mexico
基金
美国国家科学基金会;
关键词
Simplex; Bayesian nonparametrics; Frequentist asymptotics; BAYESIAN DENSITY-ESTIMATION;
D O I
10.1016/j.spl.2016.09.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Dirichlet process mixture of mixtures of Dirichlet models for density estimation. By assuming random sampling from a density belonging to a Holder class, we show that the posterior distribution of the model is rate-optimal. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [31] Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data
    Dinari, Or
    Freifeld, Oren
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 818 - 835
  • [32] An optimal data ordering scheme for Dirichlet process mixture models
    Wang, Xue
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 42 - 52
  • [33] CLASSIFICATION OF MULTIVARIATE DATA USING DIRICHLET PROCESS MIXTURE MODELS
    Djuric, Petar M.
    Ferrari, Andre
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 441 - 445
  • [34] Unsupervised learning of Dirichlet process mixture models with missing data
    Zhang, Xunan
    Song, Shiji
    Zhu, Lei
    You, Keyou
    Wu, Cheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (01) : 1 - 14
  • [35] Scalable Estimation of Dirichlet Process Mixture Models on Distributed Data
    Wang, Ruohui
    Lin, Dahua
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4632 - 4639
  • [36] Dirichlet Process Mixture Models with Pairwise Constraints for Data Clustering
    Li C.
    Rana S.
    Phung D.
    Venkatesh S.
    Annals of Data Science, 2016, 3 (2) : 205 - 223
  • [37] Multimode process data modeling: A Dirichlet process mixture model based Bayesian robust factor analyzer approach
    Zhu, Jinlin
    Ge, Zhicliang
    Song, Zhihuan
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 142 : 231 - 244
  • [38] A Dirichlet process mixture model for survival outcome data: assessing nationwide kidney transplant centers
    Zhao, Lili
    Shi, Jingchunzi
    Shearon, Tempie H.
    Li, Yi
    STATISTICS IN MEDICINE, 2015, 34 (08) : 1404 - 1416
  • [39] A HIERARCHICAL DIRICHLET PROCESS MIXTURE MODEL FOR HAPLOTYPE RECONSTRUCTION FROM MULTI-POPULATION DATA
    Sohn, Kyung-Ah
    Xing, Eric P.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (02): : 791 - 821
  • [40] A Dirichlet Process Mixture Model for Autonomous Sleep Apnea Detection using Oxygen Saturation Data
    Li, Zhenglin
    Arvaneh, Mahnaz
    Elphick, Heather E.
    Kingshott, Ruth N.
    Mihaylova, Lyudmila S.
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 622 - 629