Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

被引:1
|
作者
Dyachenko, Alexander [1 ]
Karp, Dmitrii [2 ,3 ,4 ]
机构
[1] Keldysh Inst Appl Math, Moscow 125047, Russia
[2] Holon Inst Technol, Dept Math, IL-5810201 Holon, Israel
[3] Far Eastern Fed Univ, Sch Econ & Management, Vladivostok 690922, Russia
[4] Far Eastern Fed Univ, Far Eastern Ctr Res & Educ Math, Vladivostok 690922, Russia
关键词
gauss hypergeometric function; gauss continued fraction; integral representation; JACOBI-POLYNOMIALS; 3-TERM RELATIONS; STIELTJES; ZEROS;
D O I
10.3390/math10203903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x +/- i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Utility of integral representations for basic hypergeometric functions and orthogonal polynomials
    Howard S. Cohl
    Roberto S. Costas-Santos
    The Ramanujan Journal, 2023, 61 : 649 - 674
  • [22] ON MELLIN-BARNES INTEGRAL REPRESENTATIONS FOR GKZ HYPERGEOMETRIC FUNCTIONS
    Matsubara-Heo, Saiei-Jaeyeong
    KYUSHU JOURNAL OF MATHEMATICS, 2020, 74 (01) : 109 - 125
  • [23] Utility of integral representations for basic hypergeometric functions and orthogonal polynomials
    Cohl, Howard S.
    Costas-Santos, Roberto S.
    RAMANUJAN JOURNAL, 2023, 61 (02): : 649 - 674
  • [24] SPIRALLIKENESS OF SHIFTED HYPERGEOMETRIC FUNCTIONS
    Sugawa, Toshiyuki
    Wang, Li-Mei
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 963 - 977
  • [25] DIHEDRAL GAUSS HYPERGEOMETRIC FUNCTIONS
    Vidunas, Raimundas
    KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) : 141 - 167
  • [26] On the Computation of Gauss Hypergeometric Functions
    Nadarajah, Saralees
    AMERICAN STATISTICIAN, 2015, 69 (02): : 146 - 148
  • [27] Degenerate Gauss hypergeometric functions
    Vidunas, Raimundas
    KYUSHU JOURNAL OF MATHEMATICS, 2007, 61 (01) : 109 - 135
  • [28] On Gaussian Hypergeometric Functions of Three Variables: Some New Integral Representations
    Bin-Saad, Maged G.
    Shahwan, Mohannad J. S.
    Younis, Jihad A.
    Aydi, Hassen
    Salam, Mohamed A. Abd El
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [29] Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions
    Gautschi, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 139 (01) : 173 - 187
  • [30] On Gaussian Hypergeometric Functions of Three Variables: Some New Integral Representations
    Bin-Saad, Maged G.
    Shahwan, Mohannad J. S.
    Younis, Jihad A.
    Aydi, Hassen
    Abd El Salam, Mohamed A.
    JOURNAL OF MATHEMATICS, 2022, 2022