Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

被引:1
|
作者
Dyachenko, Alexander [1 ]
Karp, Dmitrii [2 ,3 ,4 ]
机构
[1] Keldysh Inst Appl Math, Moscow 125047, Russia
[2] Holon Inst Technol, Dept Math, IL-5810201 Holon, Israel
[3] Far Eastern Fed Univ, Sch Econ & Management, Vladivostok 690922, Russia
[4] Far Eastern Fed Univ, Far Eastern Ctr Res & Educ Math, Vladivostok 690922, Russia
关键词
gauss hypergeometric function; gauss continued fraction; integral representation; JACOBI-POLYNOMIALS; 3-TERM RELATIONS; STIELTJES; ZEROS;
D O I
10.3390/math10203903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x +/- i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers: More on Integral Representations
    Dyachenko, A.
    Karp, D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) : 2764 - 2776
  • [2] Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers: More on Integral Representations
    A. Dyachenko
    D. Karp
    Lobachevskii Journal of Mathematics, 2021, 42 : 2764 - 2776
  • [3] Ratios of the gauss hypergeometric functions with parameters shifted by integers: Part I
    Dyachenko, Alexander
    Karp, Dmitrii B.
    arXiv, 2021,
  • [4] SAIGO FRACTIONAL INTEGRAL OPERATOR OF THE GAUSS HYPERGEOMETRIC FUNCTIONS
    Suthar, Daya Lal
    Shimelis, Biniyam
    JOURNAL OF SCIENCE AND ARTS, 2016, (03): : 201 - 208
  • [5] INTEGRAL REPRESENTATIONS FOR HYPERGEOMETRIC FUNCTIONS OF 3 VARIABLES
    SHARMA, BL
    SAXENA, RK
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1964, 78 (03): : 163 - &
  • [6] A note on two new integral representations of the Gauss hypergeometric function with an application
    Chammam, Wathek
    Rathie, Arjun K.
    Khlifi, Mongia
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (03) : 336 - 340
  • [7] On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions
    Baleanu, Dumitru
    Agarwal, Praveen
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions
    Choi, Junesang
    Agarwal, Praveen
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S TRIPLE HYPERGEOMETRIC FUNCTIONS
    Choi, Junesang
    Hasanov, Anvar
    Srivastava, H. M.
    Turaev, Mamasali
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2751 - 2762
  • [10] k-SRIVASTAVA HYPERGEOMETRIC FUNCTIONS AND THEIR INTEGRAL REPRESENTATIONS
    Halici, Sena
    Cetinkaya, Aysegul
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)