Entropy and the variational principle for actions of sofic groups

被引:87
|
作者
Kerr, David [1 ]
Li, Hanfeng [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
AMENABLE-GROUPS; AUTOMORPHISMS; SPACES;
D O I
10.1007/s00222-011-0324-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants, and we establish the variational principle in this context. In the case of residually finite groups we use the variational principle to compute the topological entropy of principal algebraic actions whose defining group ring element is invertible in the full group C (au)-algebra.
引用
收藏
页码:501 / 558
页数:58
相关论文
共 50 条
  • [41] KMS STATES, ENTROPY, AND A VARIATIONAL PRINCIPLE FOR PRESSURE
    de Castro, Gilles G.
    Lopes, Artur O.
    [J]. REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 333 - 346
  • [42] Stochastic variational quantization and maximum entropy principle
    Kodama, T.
    Koide, T.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2015, 46 (05) : 768 - 771
  • [43] Variational principle and the dynamical entropy of space translation
    Moriya, H
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (10) : 1315 - 1328
  • [44] Slow Entropy for Noncompact Sets and Variational Principle
    Depeng Kong
    Ercai Chen
    [J]. Journal of Dynamics and Differential Equations, 2014, 26 : 477 - 492
  • [45] Stochastic variational quantization and maximum entropy principle
    T. Kodama
    T. Koide
    [J]. Physics of Particles and Nuclei, 2015, 46 : 768 - 771
  • [46] Bowen entropy for actions of amenable groups
    Zheng, Dongmei
    Chen, Ercai
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (02) : 895 - 911
  • [47] Sofic and Hyperlinear Groups
    Capraro, Valerio
    Lupini, Martino
    [J]. INTRODUCTION TO SOFIC AND HYPERLINEAR GROUPS AND CONNES' EMBEDDING CONJECTURE, 2015, 2136 : 13 - 71
  • [48] POLISH MODELS AND SOFIC ENTROPY
    Hayes, Ben
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (02) : 241 - 275
  • [49] Bowen entropy for actions of amenable groups
    Dongmei Zheng
    Ercai Chen
    [J]. Israel Journal of Mathematics, 2016, 212 : 895 - 911
  • [50] Sofic boundaries of groups and coarse geometry of sofic approximations
    Alekseev, Vadim
    Finn-Sell, Martin
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2019, 13 (01) : 191 - 234