Understanding the role of segmentation on process-structure-property predictions made via machine learning

被引:3
|
作者
Massey, Caroline E. [1 ,2 ]
Saldana, Christopher J. [1 ]
Moore, David G. [2 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, 801 Ferst Dr, Atlanta, GA 30332 USA
[2] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA
关键词
Machine learning; Computed tomography; Additive manufacturing; Part qualification; Porosity analysis; POWDER BED FUSION; TOMOGRAPHY; POROSITY;
D O I
10.1007/s00170-022-09003-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present study investigated the effect of porosity surface determination methods on performance of machine learning models used to predict the tensile properties of AlSi10Mg processed by laser powder bed fusion from micro-computed tomography data. Machine learning models applied in this work include support vector machines, neural networks, decision trees, and Bayesian classifiers. The effects of isosurface thresholding and local gradient approaches for porosity segmentation, as well as image filtering schemes, on model precision were evaluated for samples produced under differing levels of global energy density.
引用
收藏
页码:4011 / 4021
页数:11
相关论文
共 50 条
  • [31] Understanding machine learning software defect predictions
    Esteves, Geanderson
    Figueiredo, Eduardo
    Veloso, Adriano
    Viggiato, Markos
    Ziviani, Nivio
    AUTOMATED SOFTWARE ENGINEERING, 2020, 27 (3-4) : 369 - 392
  • [32] Metal AM process-structure-property relational linkages using Gaussian process surrogates
    Saunders, Robert N.
    Teferra, Kirubel
    Elwany, Alaa
    Michopoulos, John G.
    Lagoudas, Dimitris
    ADDITIVE MANUFACTURING, 2023, 62
  • [33] Process-structure-property analysis of short carbon fiber reinforced polymer composite via fused filament fabrication
    Pei, Shenli
    Wang, Kaifeng
    Chen, Cheng-Bang
    Li, Jingjing
    Li, Yang
    Zeng, Danielle
    Su, Xuming
    Yang, Hui
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 64 (64) : 544 - 556
  • [34] A process-structure-property study of anisotropic PMDA-ODA films
    Hardaker, SS
    Samuels, RJ
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1997, 35 (05) : 777 - 788
  • [35] Sorting out a process-structure-property relationship in polymer organic electronics
    Persson, Nils
    McBride, Michael
    Lu, Jye-Chyi
    Reichmanis, Elsa
    Grover, Martha
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [36] Process-structure-property relationships in bimodal machined microstructures using robust structure descriptors
    Fernandez-Zelaia, Patxi
    Melkote, Shreyes N.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 273
  • [37] Process-Structure-Property Relationships of Laser Powder Bed Fusion Lattice Structures
    Jost, Elliott W. W.
    Pegues, Jonathan
    Moore, David
    Saldana, Christopher
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (09):
  • [38] Scaling Effects in Perovskite Ferroelectrics: Fundamental Limits and Process-Structure-Property Relations
    Ihlefeld, Jon F.
    Harris, David T.
    Keech, Ryan
    Jones, Jacob L.
    Maria, Jon-Paul
    Trolier-McKinstry, Susan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (08) : 2537 - 2557
  • [39] Accelerating materials property predictions using machine learning
    Pilania, Ghanshyam
    Wang, Chenchen
    Jiang, Xun
    Rajasekaran, Sanguthevar
    Ramprasad, Ramamurthy
    SCIENTIFIC REPORTS, 2013, 3
  • [40] Accelerating materials property predictions using machine learning
    Ghanshyam Pilania
    Chenchen Wang
    Xun Jiang
    Sanguthevar Rajasekaran
    Ramamurthy Ramprasad
    Scientific Reports, 3