Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning

被引:1
|
作者
Soria-Ruiz, Jesus [1 ]
Fernandez-Ordonez, Yolanda M. [2 ]
Ambrosio-Ambrosio, Juan P. [1 ]
Escalona-Maurice, Miguel A. [2 ]
机构
[1] Natl Inst Res Forestry Agr & Livestock INIFAP, Zinacantepec 52107, Mexico
[2] Postgrad Coll Agr Sci COLPOS, Montecillo 56230, Mexico
关键词
Flooding; Sentinel-1; SAR; Random Forest Machine Learning;
D O I
10.1109/IGARSS46834.2022.9884139
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research was carried out to identify the extent and depth of flooded areas using Sentinel-1 SAR, the Digital Elevation Model generated with LiDAR and Random Forest machine learning. Training and cross-validation was performed on a set of backscatter value samples obtained from Sentinel-1. The results indicate that out of five combinations, the Random Forest algorithm had the best performance when using the four combinations (RF + Polarization VH+VV + MDE) with F1m = 0.977, AUC = 0.998 and Kappa = 0.955. SAR images have potential advantages that allow rapid and efficient diagnosis of the extent of flooding caused by excess rainfall in many regions around world.
引用
收藏
页码:5113 / 5116
页数:4
相关论文
共 50 条
  • [1] EXTENT AND DEPTH OF FLOODING USING SAR SENTINEL-1 AND MACHINE LEARNING ALGORITHMS
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Y. M.
    Ambrosio-Ambrosio, J. P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2246 - 2249
  • [2] Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images
    Chu, Yongjae
    Lee, Hoonyol
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (04) : 375 - 386
  • [3] Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan
    Zhang, Meimei
    Chen, Fang
    Liang, Dong
    Tian, Bangsen
    Yang, Aqiang
    SUSTAINABILITY, 2020, 12 (14) : 1 - 19
  • [4] Uncovering the Extent of Flood Damage using Sentinel-1 SAR Imagery: A Case Study of the July 2020 Flood in Assam
    Thirugnanasammandamoorthi, Puviyarasi
    Ghosh, Debabrata
    Dewangan, Ram Kishan
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 102 - 114
  • [5] Flood Extent Mapping in the Caprivi Floodplain Using Sentinel-1 Time Series
    Bangira, Tsitsi
    Iannini, Lorenzo
    Menenti, Massimo
    van Niekerk, Adriaan
    Vekerdy, Zoltan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5667 - 5683
  • [6] Mapping flood extent of Cyclone Freddy using Sentinel-1 SAR data in Google Earth Engine in Southern Malawi
    Darius Phiri
    Charles Mulenga
    Vincent R. Nyirenda
    Discover Water, 5 (1):
  • [7] Flood monitoring in an Giang Province, Vietnam using global flood mapper and Sentinel-1 SAR
    Afifi, Ahmed S.
    Magdy, Ahmed
    REMOTE SENSING LETTERS, 2024, 15 (09) : 883 - 892
  • [8] Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images
    Amitrano, Donato
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3290 - 3299
  • [9] Power of SAR Imagery and Machine Learning in Monitoring Ulva prolifera: A Case Study of Sentinel-1 and Random Forest
    Zheng, Longxiao
    Wu, Mengquan
    Xue, Mingyue
    Wu, Hao
    Liang, Feng
    Li, Xiangpeng
    Hou, Shimin
    Liu, Jiayan
    CHINESE GEOGRAPHICAL SCIENCE, 2024, 34 (06) : 1134 - 1143
  • [10] Power of SAR Imagery and Machine Learning in Monitoring Ulva prolifera: A Case Study of Sentinel-1 and Random Forest
    ZHENG Longxiao
    WU Mengquan
    XUE Mingyue
    WU Hao
    LIANG Feng
    LI Xiangpeng
    HOU Shimin
    LIU Jiayan
    Chinese Geographical Science, 2024, 34 (06) : 1134 - 1143