A Deep Learning Architecture for Meningioma Brain Tumor Detection and Segmentation

被引:2
|
作者
Anita, John Nisha [1 ]
Kumaran, Sujatha [2 ]
机构
[1] Sathyabama Inst Sci & Technol, Dept Elect & Commun Engn, Chennai, India
[2] Sathyabama Inst Sci & Technol, Dept Elect & Elect Engn, Chennai, India
关键词
Meningioma; Tumor; Brain image; Sub bands;
D O I
10.15430/JCP.2022.27.3.192
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The meningioma brain tumor detection and segmentation method is a complex process due to its low intensity pixel profile. In this article, the meningioma brain tumor images were detected and tumor regions were segmented using a convolutional neural network (CNN) classification approach. The source brain MRI images were decomposed using the discrete wavelet transform and these decomposed sub bands were fused using an arithmetic fusion technique. The fused image was data augmented in order to increase the sample size. The data augmented images were classified into either healthy or malignant using a CNN classifier. Then, the tumor region in the classified meningioma brain image was segmented using an connection component analysis algorithm. The tumor region segmented meningioma brain image was compressed using a lossless compression technique. The proposed method stated in this article was experimentally tested with the sets of meningioma brain images from an open access dataset. The experimental results were compared with existing methods in terms of sensitivity, specificity and tumor segmentation accuracy.
引用
收藏
页码:192 / 198
页数:7
相关论文
共 50 条
  • [41] A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
    Huang, He
    Yang, Guang
    Zhang, Wenbo
    Xu, Xiaomei
    Yang, Weiji
    Jiang, Weiwei
    Lai, Xiaobo
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [42] Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
    Estienne, Theo
    Lerousseau, Marvin
    Vakalopoulou, Maria
    Andres, Emilie Alvarez
    Battistella, Enzo
    Carre, Alexandre
    Chandra, Siddhartha
    Christodoulidis, Stergios
    Sahasrabudhe, Mihir
    Sun, Roger
    Robert, Charlotte
    Talbot, Hugues
    Paragios, Nikos
    Deutsch, Eric
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14 (14)
  • [43] Brain tumor segmentation with deep learning: Current approaches and future perspectives
    Verma, Akash
    Yadav, Arun Kumar
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 418
  • [44] Deep Learning-Based Brain Tumor Image Analysis for Segmentation
    Zahid Mansur
    Jyotismita Talukdar
    Thipendra P. Singh
    Chandan J. Kumar
    SN Computer Science, 6 (1)
  • [45] Deep Learning for Brain Tumor Segmentation using Magnetic Resonance Images
    Gupta, Surbhi
    Gupta, Manoj
    2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 97 - 102
  • [46] Deep Learning Methods for MRI Brain Tumor Segmentation: a comparative study
    Brahim, Ikram
    Fourer, Dominique
    Vigneron, Vincent
    Maaref, Hichem
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [47] Deep Learning Based Lightweight Model for Brain Tumor Classification and Segmentation
    Andleeb, Ifrah
    Hussain, B. Zahid
    Ansari, Salik
    Ansari, Mohammad Samar
    Kanwal, Nadia
    Aslam, Asra
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 491 - 503
  • [48] An early detection and segmentation of Brain Tumor using Deep Neural Network
    Aggarwal, Mukul
    Tiwari, Amod Kumar
    Sarathi, M. Partha
    Bijalwan, Anchit
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [49] An early detection and segmentation of Brain Tumor using Deep Neural Network
    Mukul Aggarwal
    Amod Kumar Tiwari
    M Partha Sarathi
    Anchit Bijalwan
    BMC Medical Informatics and Decision Making, 23
  • [50] Employing deep learning and transfer learning for accurate brain tumor detection
    Mathivanan, Sandeep Kumar
    Sonaimuthu, Sridevi
    Murugesan, Sankar
    Rajadurai, Hariharan
    Shivahare, Basu Dev
    Shah, Mohd Asif
    SCIENTIFIC REPORTS, 2024, 14 (01):