Flexible INAR(1) models for equidispersed, underdispersed or overdispersed counts

被引:2
|
作者
Kang, Yao [1 ]
Wang, Dehui [2 ]
Lu, Feilong [3 ]
Wang, Shuhui [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Peoples R China
[2] Liaoning Univ, Sch Math & Stat, Shenyang, Peoples R China
[3] Univ Sci & Technol Liaoning, Sch Sci, Anshan, Peoples R China
[4] Jilin Univ, Sch Math, Changchun, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Binomial thinning operator; COM-Poisson distribution; INAR(1) process; Random coefficient; TIME-SERIES; DISTRIBUTIONS;
D O I
10.1007/s42952-022-00186-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Equidispersed, underdispersed and overdispersed count data are commonly encountered in practice. To better describe these data characteristics, this paper develops two classes of INAR(1) processes, which not only can model a wide range of overdispersion and underdispersion, but also have ability to describe the zero-inflated and zero-deflated characteristics of the count data. The probabilistic and statistical properties of the two processes are studied. Estimators of the model parameters are derived by using conditional maximum likelihood (CML) and modified conditional least squares (MCLS) methods. Some asymptotic properties and numerical results of the estimators are investigated. Three real examples are given to show the flexibility and usefulness of the proposed models.
引用
下载
收藏
页码:1268 / 1301
页数:34
相关论文
共 50 条
  • [21] Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion
    Toledo, Douglas
    Umetsu, Cristiane Akemi
    Monteiro Camargo, Antonio Fernando
    Rodrigues de Lara, Idemauro Antonio
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (03) : 473 - 497
  • [22] Additive outliers in INAR(1) models
    Barczy, Matyas
    Ispany, Marton
    Pap, Gyula
    Scotto, Manuel
    Silva, Maria Eduarda
    STATISTICAL PAPERS, 2012, 53 (04) : 935 - 949
  • [23] Flexible Bivariate INAR(1) Processes Using Copulas
    Karlis, Dimitris
    Pedeli, Xanthi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (04) : 723 - 740
  • [24] Modeling time series of counts with a new class of INAR(1) model
    Khoo, Wooi Chen
    Ong, Seng Huat
    Biswas, Atanu
    STATISTICAL PAPERS, 2017, 58 (02) : 393 - 416
  • [25] REGRESSION-ANALYSES OF COUNTS AND RATES - POISSON, OVERDISPERSED POISSON, AND NEGATIVE BINOMIAL MODELS
    GARDNER, W
    MULVEY, EP
    SHAW, EC
    PSYCHOLOGICAL BULLETIN, 1995, 118 (03) : 392 - 404
  • [26] Modeling time series of counts with a new class of INAR(1) model
    Wooi Chen Khoo
    Seng Huat Ong
    Atanu Biswas
    Statistical Papers, 2017, 58 : 393 - 416
  • [27] Improved estimation for Poisson INAR(1) models
    Bourguignon, M.
    Vasconcellos, K. L. P.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (12) : 2425 - 2441
  • [28] On the extremes of the max-INAR(1) process for time series of counts
    Scotto, Manuel G.
    Gouveia, Sonia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1136 - 1154
  • [29] RESIDUAL ANALYSIS WITH BIVARIATE INAR(1) MODELS
    Popovic, Predrag M.
    Nastic, Aleksandar S.
    Ristic, Miroslav M.
    REVSTAT-STATISTICAL JOURNAL, 2018, 16 (03) : 349 - 363
  • [30] On ARL-unbiased c-charts for INAR(1) Poisson counts
    Sofia Paulino
    Manuel Cabral Morais
    Sven Knoth
    Statistical Papers, 2019, 60 : 1021 - 1038