MONOIDS AND POINTED S-PROTOMODULAR CATEGORIES

被引:24
|
作者
Bourn, Dominique [1 ]
Martins-Ferreira, Nelson [2 ]
Montoli, Andrea [3 ]
Sobral, Manuela [3 ,4 ]
机构
[1] Univ Littoral Cote dOpale, Lab Math Pures & Appl, Calais, France
[2] Inst Politecn Leiria, ESTG, CDRSP, Leiria, Portugal
[3] Univ Coimbra, CMUC, P-3001501 Coimbra, Portugal
[4] Univ Coimbra, Dept Math, P-3001501 Coimbra, Portugal
关键词
fibration of points; Mal'tsev and protomodular categories; monoid with operations; Schreier split epimorphism; pointed S-protomodular category; SEMIDIRECT PRODUCTS; CROSSED-MODULES; CENTRALITY;
D O I
10.4310/HHA.2016.v18.n1.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the notion of pointed S-protomodular category, with respect to a suitable class S of points, and we prove that these categories satisfy, relatively to the class S, many partial aspects of the properties of Mal'tsev and protomodular categories, like the split short five lemma for S-split exact sequences, or the fact that a reflexive S-relation is transitive. The main examples of S-protomodular categories are the category of monoids and, more generally, any category of monoids with operations, where the class S is the class of Schreier points.
引用
下载
收藏
页码:151 / 172
页数:22
相关论文
共 50 条
  • [21] Simplicial monoids and Segal categories
    Bergner, Julia E.
    CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS, 2007, 431 : 59 - 83
  • [22] Module categories over finite pointed tensor categories
    César Galindo
    Martín Mombelli
    Selecta Mathematica, 2012, 18 : 357 - 389
  • [23] Module categories over finite pointed tensor categories
    Galindo, Cesar
    Mombelli, Martin
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (02): : 357 - 389
  • [24] On Hopf monoids in duoidal categories
    Boehm, Gabriella
    Chen, Yuanyuan
    Zhang, Liangyun
    JOURNAL OF ALGEBRA, 2013, 394 : 139 - 172
  • [25] VERSATILE MONOIDS AND VERSATILE CATEGORIES
    GOULD, MI
    PLATT, CR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 649 - &
  • [26] Equalizers and kernels in categories of monoids
    Alberto Facchini
    Emanuele Rodaro
    Semigroup Forum, 2017, 95 : 455 - 474
  • [27] On categories of monoids, comonoids, and bimonoids
    Porst, Hans-E.
    QUAESTIONES MATHEMATICAE, 2008, 31 (02) : 127 - 139
  • [28] NEW EXACTNESS CONDITIONS INVOLVING SPLIT CUBES IN PROTOMODULAR CATEGORIES
    Gray, J. R. A.
    Martins-Ferreira, N.
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 1031 - 1058
  • [29] Ideals and Clots in Pointed Regular Categories
    G. Janelidze
    L. Márki
    A. Ursini
    Applied Categorical Structures, 2009, 17
  • [30] Ideals and Clots in Pointed Regular Categories
    Janelidze, G.
    Marki, L.
    Ursini, A.
    APPLIED CATEGORICAL STRUCTURES, 2009, 17 (04) : 345 - 350