On an extension property for characteristic functions

被引:1
|
作者
Norvidas, Saulius [1 ]
机构
[1] Vilnius Univ, Inst Math & Informat, Akad 4, LT-08663 Vilnius, Lithuania
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 188卷 / 02期
关键词
Characteristic function; Density function; Entire function of exponential type; Probability measure;
D O I
10.1007/s00605-018-1197-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f:RC be the characteristic function of a probability measure. We study the following question: Is it true that for any closed interval I on R, which does not contain the origin, there exists a characteristic function g such that g coincides with f on I but g?f on R?
引用
收藏
页码:309 / 319
页数:11
相关论文
共 50 条
  • [41] THE EXTENSION PROPERTY OF ORDERINGS
    CHAJDA, I
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (3-4): : 253 - 255
  • [42] EXTENSION OF FUNCTIONS
    GRANDE, Z
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (1-2): : 43 - 45
  • [43] Property(ω) and the Single-valued Extension Property
    Lei DAI
    Xiao Hong CAO
    Qi GUO
    ActaMathematicaSinica,EnglishSeries, 2021, (08) : 1254 - 1266
  • [44] Property (ω) and the Single-valued Extension Property
    Lei Dai
    Xiao Hong Cao
    Qi Guo
    Acta Mathematica Sinica, English Series, 2021, 37 : 1254 - 1266
  • [45] Property(ω1) and Single Valued Extension Property
    Chen Hui SUN
    Journal of Mathematical Research with Applications, 2010, (06) : 1009 - 1014
  • [46] Property (ω) and the Single-valued Extension Property
    Dai, Lei
    Cao, Xiao Hong
    Guo, Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1254 - 1266
  • [47] Single-Valued Extension Property and Property (ω)
    Yang, Lili
    Cao, Xiaohong
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2021, 55 (04) : 316 - 325
  • [48] A property of functions
    Lebesgue, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1903, 137 : 1228 - 1230
  • [49] ON A PROPERTY OF FUNCTIONS
    Grande, Marcin
    REAL ANALYSIS EXCHANGE, 2005, 31 (02) : 469 - 476
  • [50] A compact set without Markov's property but with an extension operator for C-infinity-functions
    Goncharov, A
    STUDIA MATHEMATICA, 1996, 119 (01) : 27 - 35