Let G be a group generated by a set C of involutions which is closed under conjugation. Let pi be a set of odd primes. Assume that either (1) G is solvable, or (2) G is a linear group. We show that if the product of any two involutions in C is a pi-element, then G is solvable in both cases and G = O-pi(G) < t >, where t is an element of C. If (2) holds and the product of any two involutions in C is a unipotent element, then G is solvable. Finally we deduce that if G is a sharply 2-transitive (infinite) group of odd (permutational) characteristic, such that every 3 involutions in G generate a solvable or a linear group; or if G is linear of (permutational) characteristic 0, then G contains a regular normal abelian subgroup.
机构:
Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, AustraliaUniv Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
Bamberg, John
Giudici, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, AustraliaUniv Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
Giudici, Michael
Liebeck, Martin W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, EnglandUniv Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
Liebeck, Martin W.
Praeger, Cheryl E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
King Abdulaziz Univ, Jeddah 21413, Saudi ArabiaUniv Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
Praeger, Cheryl E.
Saxl, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, DPMMS, CMS, Cambridge CB3 0WB, EnglandUniv Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia