Fractional Order Echo State Network for Time Series Prediction

被引:13
|
作者
Yao, Xianshuang [1 ]
Wang, Zhanshan [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order; Echo state network; Time series prediction; Parameter optimization; OPTIMIZATION; SYSTEMS;
D O I
10.1007/s11063-020-10267-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this brief, considering the infinite memory of fractional-order differential equation, a fractional-order echo state network (FESN) is given for time series prediction. For the FESN, the reservoir state differential equation is replaced with fractional-order differential equation. According to the advantages of FESN, the dynamic characteristics of a class of time series can be fully reflected. In order to improve the prediction performance of FESN, a fractional-order output weights learning method and a fractional-order parameter optimization method are given to train the output weights and optimize the reservoir parameters, respectively. Finally, two numerical examples are used to show the effectiveness of FESN.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [21] Chaotic time series prediction based on robust echo state network
    Li De-Cai
    Han Min
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [22] Design of sparse Bayesian echo state network for time series prediction
    Wang, Lei
    Su, Zhong
    Qiao, Junfei
    Yang, Cuili
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 7089 - 7102
  • [23] Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction
    Basterrech, Sebastian
    Rubino, Gerardo
    APPLIED SOFT COMPUTING, 2023, 144
  • [24] A novel echo state network for multivariate and nonlinear time series prediction
    Shen, Lihua
    Chen, Jihong
    Zeng, Zhigang
    Yang, Jianzhong
    Jin, Jian
    APPLIED SOFT COMPUTING, 2018, 62 : 524 - 535
  • [25] Hierarchical plasticity echo state network for chaotic time series prediction
    Na X.-D.
    Wang J.-N.
    Liu M.-R.
    Ren W.-J.
    Han M.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (01): : 133 - 142
  • [26] An echo state network model with the protein structure for time series prediction
    Gong, Yuanpeng
    Lun, Shuxian
    Li, Ming
    Lu, Xiaodong
    APPLIED SOFT COMPUTING, 2024, 153
  • [27] Modified echo state network for prediction of nonlinear chaotic time series
    Sui, Yongbo
    Gao, Hui
    NONLINEAR DYNAMICS, 2022, 110 (04) : 3581 - 3603
  • [28] Chaotic time series prediction based on wavelet echo state network
    Song Tong
    Li Han
    ACTA PHYSICA SINICA, 2012, 61 (08)
  • [29] Modified echo state network for prediction of nonlinear chaotic time series
    Yongbo Sui
    Hui Gao
    Nonlinear Dynamics, 2022, 110 : 3581 - 3603
  • [30] Time series prediction with an improved echo state network using small world network
    Lun, Shu-Xian
    Lin, Jian
    Yao, Xian-Shuang
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (09): : 1669 - 1679