Fractional Order Echo State Network for Time Series Prediction

被引:13
|
作者
Yao, Xianshuang [1 ]
Wang, Zhanshan [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order; Echo state network; Time series prediction; Parameter optimization; OPTIMIZATION; SYSTEMS;
D O I
10.1007/s11063-020-10267-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this brief, considering the infinite memory of fractional-order differential equation, a fractional-order echo state network (FESN) is given for time series prediction. For the FESN, the reservoir state differential equation is replaced with fractional-order differential equation. According to the advantages of FESN, the dynamic characteristics of a class of time series can be fully reflected. In order to improve the prediction performance of FESN, a fractional-order output weights learning method and a fractional-order parameter optimization method are given to train the output weights and optimize the reservoir parameters, respectively. Finally, two numerical examples are used to show the effectiveness of FESN.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [1] Fractional Order Echo State Network for Time Series Prediction
    Xianshuang Yao
    Zhanshan Wang
    Neural Processing Letters, 2020, 52 : 603 - 614
  • [2] Fractional-integer-order echo state network for time series prediction
    Yao, Xianshuang
    Wang, Yao
    Ma, Di
    Cao, Shengxian
    Ma, Qingchuan
    APPLIED SOFT COMPUTING, 2024, 153
  • [3] Broad fractional-order echo state network with slime mould algorithm for multivariate time series prediction
    Yao, Xianshuang
    Wang, Huiyu
    Huang, Zhanjun
    APPLIED SOFT COMPUTING, 2024, 163
  • [4] Memory augmented echo state network for time series prediction
    Liu, Qianwen
    Li, Fanjun
    Wang, Wenting
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (07): : 3761 - 3776
  • [5] Adaptive Lasso Echo State Network for Time Series Prediction
    Zhao, Jing
    Wang, Lei
    Yang, Cuili
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5108 - 5111
  • [6] Memory augmented echo state network for time series prediction
    Qianwen Liu
    Fanjun Li
    Wenting Wang
    Neural Computing and Applications, 2024, 36 : 3761 - 3776
  • [7] Subspace Echo State Network for Multivariate Time Series Prediction
    Han, Min
    Xu, Meiling
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 : 681 - 688
  • [8] Broad echo state network for multivariate time series prediction
    Yao, Xianshuang
    Wang, Zhanshan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (09): : 4888 - 4906
  • [9] Echo State Network With Probabilistic Regularization for Time Series Prediction
    Chen, Xiufang
    Liu, Mei
    Li, Shuai
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (08) : 1743 - 1753
  • [10] Laplacian Echo State Network for Multivariate Time Series Prediction
    Han, Min
    Xu, Meiling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) : 238 - 244