Solution-based fabrication of VO2 (M) nanoparticles via lyophilisation

被引:23
|
作者
Cao, Xun [1 ]
Thet, Myat Noe [1 ]
Zhang, Yu [2 ]
Loo, Say Chye Joachim [1 ,3 ]
Magdassi, Shlomo [4 ]
Yan, Qingyu [1 ,2 ,5 ]
Long, Yi [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU, Singapore 637553, Singapore
[3] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 637551, Singapore
[4] Hebrew Univ Jerusalem, Casali Inst Appl Chem, IL-91904 Jerusalem, Israel
[5] Nanyang Technol Univ, TUM CREATE Res Ctr NTU, Singapore 637459, Singapore
来源
RSC ADVANCES | 2015年 / 5卷 / 33期
基金
新加坡国家研究基金会;
关键词
ENHANCED LUMINOUS TRANSMITTANCE; PHASE-TRANSITION TEMPERATURE; METAL-INSULATOR-TRANSITION; VANADIUM-OXIDE AEROGELS; SOLAR MODULATION; THIN-FILMS; THERMOCHROMIC PROPERTIES; OPTICAL-PROPERTIES; DIOXIDE; FOILS;
D O I
10.1039/c4ra16840b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermochromic vanadium dioxide (VO2) is the most extensively researched smart material owing to its near room-temperature phase transition at around 68 degrees C. Freeze drying has been employed in the solution-based fabrication of highly pure and crystalline VO2 nanoparticles and it was found that freeze drying can largely eliminate the agglomeration issue which is common in nanoparticle fabrication. The particle size, phase transition temperature (tau(c)), crystallinity and latent heat (L-H) have been systematically studied by changing the precursor concentration and annealing temperature. The freeze-dried sample (with 7.5 mL H2O2 in precursor) annealed at 650 degrees C has a particle size of similar to 53 nm and tau(c) of 64.5 degrees C, as well as high crystallinity with L-C of 36.76 J g(-1).
引用
收藏
页码:25669 / 25675
页数:7
相关论文
共 50 条
  • [31] Direct and continuous synthesis of VO2 nanoparticles
    Powell, M. J.
    Marchand, P.
    Denis, C. J.
    Bear, J. C.
    Darr, J. A.
    Parkin, I. P.
    NANOSCALE, 2015, 7 (44) : 18686 - 18693
  • [32] Optical properties of VO2 spherical nanoparticles
    Coskun, Mustafa
    Altinoz, Safi
    Coskum, Ozlem Duyar
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2022, 49
  • [33] Magnetic behavior of doped VO2 nanoparticles
    Petukhova Yu.V.
    Osmolowskaya O.M.
    Fedorova A.V.
    Osmolowsky M.G.
    Bulletin of the Russian Academy of Sciences: Physics, 2014, 78 (4) : 325 - 327
  • [34] Fabrication of VO2 nanopowder via direct reaction of vanadium metal and hydrogen peroxide
    Miyazaki, Hidetoshi
    IIguni, Yusuke
    Tanaka, Yunti
    Suzuki, Hisao
    Ota, Toshitaka
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2013, 121 (1409) : 100 - 102
  • [35] Fabrication of pure monoclinic VO2 nanoporous nanorods via a mild pyrolysis process
    Jung, Daeyong
    Kim, Ungsoo
    Cho, Wooseok
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 6973 - 6979
  • [36] Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
    Yuchao Li
    Fengyu Kong
    Bin Wang
    Yanhua Zhao
    Zuankai Wang
    Frontiers of Optoelectronics, 2021, 14 : 311 - 320
  • [37] Fabrication and optical performance research of VO2/SiO2/VO2 composite spherical structure films
    Liang, Jiran
    Li, Xinzhe
    Zhang, Dequan
    Wang, Shuangli
    Wang, Zhaoyang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (08) : 2229 - 2236
  • [38] Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
    Li, Yuchao
    Kong, Fengyu
    Wang, Bin
    Zhao, Yanhua
    Wang, Zuankai
    FRONTIERS OF OPTOELECTRONICS, 2021, 14 (03) : 311 - 320
  • [39] Solution-based fabrication of a graphene–ZnO nanocomposite
    Fatima Tuz Johra
    Mi-Jung Lee
    Woo-Gwang Jung
    Journal of Sol-Gel Science and Technology, 2013, 66 : 481 - 487
  • [40] Fabrication and characterization of nanocrystalline VO2 thin films
    Wang, HC
    Yi, XJ
    Lai, JJ
    Li, Y
    CHINESE PHYSICS LETTERS, 2005, 22 (07) : 1746 - 1748