Application of Machine Learning for Drone Classification using Radars

被引:5
|
作者
Hudson, Sinclair [1 ]
Balaji, Bhashyam [2 ]
机构
[1] Univ Waterloo, 200 Univ Ave W, Waterloo, ON, Canada
[2] Def RD Canada, Radar Sensing & Exploitat Sect, Ottawa Res Ctr, 3701 Carling Ave, Ottawa, ON K1A 0Z4, Canada
关键词
Drone Classification; RADAR; Convolutional Neural Networks;
D O I
10.1117/12.2588694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Drone classification based on radar return signal is an important task for public safety applications. Determining the make or class of a drone gives information about the potential intent of the UAV. We present a novel method for classifying commercially available drones based on their radar return signal, using a convolutional neural network. Our approach achieves 0.46 mean Average Precision (mAP) on a simulated dataset at 5 dB SNR.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Application of Machine Learning Techniques for Fake News Classification
    Silva, Kim
    Paixao, Crysttian
    Rodrigues, Paulo Canas
    [J]. MEASUREMENT-INTERDISCIPLINARY RESEARCH AND PERSPECTIVES, 2024,
  • [42] Application of machine learning to skin cancer detection and classification
    Terentis, Andrew
    Strasswimmer, John
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [43] Application of Machine Learning on Brain Cancer Multiclass Classification
    Panca, V.
    Rustam, Z.
    [J]. INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [44] Application of machine learning algorithms for SCG signal classification
    Natalia, Konnova
    Mikhail, Basarab
    Vera, Khaperskaya
    [J]. 2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [45] Machine learning algorithms application to road defects classification
    Nguyen, T. H.
    Nguyen, T. L.
    Sidorov, D. N.
    Dreglea, A. I.
    [J]. INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2018, 12 (01): : 59 - 66
  • [46] Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis
    Ramos Magna, Andres Alejandro
    Allende-Cid, Hector
    Taramasco, Carla
    Becerra, Carlos
    Figueroa, Rosa L.
    [J]. IEEE ACCESS, 2020, 8 : 106198 - 106213
  • [47] Empirical Analysis of Application-Level Traffic Classification Using Supervised Machine Learning
    Park, Byungchul
    Won, Young J.
    Choi, Mi-Jung
    Kim, Myung-Sup
    Hong, James W.
    [J]. CHALLENGES FOR NEXT GENERATION NETWORK OPERATIONS AND SERVICE MANAGEMENT, PROCEEDINGS, 2008, 5297 : 474 - +
  • [48] Study and Analysis of Various Partial Discharge Signals Classification Using Machine Learning Application
    Banjare, Hitesh Kumar
    Sahoo, Rakesh
    Karmakar, Subrata
    [J]. 2022 IEEE 6TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS, CATCON, 2022, : 52 - 56
  • [49] Classification of large acoustic datasets using machine learning and crowdsourcing: Application to whale calls
    Shamir, Lior
    Yerby, Carol
    Simpson, Robert
    von Benda-Beckmann, Alexander M.
    Tyack, Peter
    Samarra, Filipa
    Miller, Patrick
    Wallin, John
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 135 (02): : 953 - 962
  • [50] Classification of Hemilabile Ligands Using Machine Learning
    Kevlishvili, Ilia
    Duan, Chenru
    Kulik, Heather J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (49): : 11100 - 11109