The spectrum of a linear Hamiltonian system and symplectic geometry of a complex Artin space

被引:0
|
作者
Kozov, AVV [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:385 / 387
页数:3
相关论文
共 50 条
  • [41] Symplectic Transformations and a Reduction Method for Asymptotically Linear Hamiltonian Systems
    Cheng, Rong
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 209 - 214
  • [42] SYMPLECTIC DIFFERENCE-SCHEMES FOR LINEAR HAMILTONIAN CANONICAL SYSTEMS
    FENG, K
    WU, HM
    QIN, MZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (04): : 371 - 380
  • [43] HAMILTONIAN DYNAMICS IN SYMPLECTIC PHASE SPACE AND NAMBUS FORMULATION OF MECHANICS
    OLIVEIRA, CG
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) : 120 - 125
  • [44] Combining finite element space-discretizations with symplectic time-marching schemes for linear Hamiltonian systems
    Cockburn, Bernardo
    Du, Shukai
    Sanchez, Manuel A.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [45] Applications of Grothendieck’s inequality to linear symplectic geometry
    Efim Gluskin
    Shira Tanny
    Annales mathématiques du Québec, 2021, 45 : 239 - 247
  • [46] CALCULATION OF BARYON SPECTRUM WITH A LINEAR HAMILTONIAN
    CUTKOSKY, RE
    HENDRICK, RE
    PHYSICAL REVIEW D, 1977, 16 (03): : 793 - 798
  • [47] Applications of Grothendieck's inequality to linear symplectic geometry
    Gluskin, Efim
    Tanny, Shira
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (01): : 239 - 247
  • [48] Symplectic Geometry of a Moduli Space of Framed Higgs Bundles
    Biswas, Indranil
    Logares, Marina
    Peon-Nieto, Ana
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 5623 - 5650
  • [49] SYMPLECTIC-GEOMETRY OF THE LOOP SPACE OF A RIEMANNIAN MANIFOLD
    WURZBACHER, T
    JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (04) : 345 - 384
  • [50] When symplectic topology meets Banach space geometry
    Ostrover, Yaron
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 959 - 981