Automatic continuity of M-norms on C*-algebras

被引:7
|
作者
Oikhberg, Timur [2 ,3 ]
Peralta, Antonio M. [1 ]
Ramirez, Maribel [4 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] Univ Almeria, Dept Algebra & Anal Matemat, Almeria 04120, Spain
关键词
C*-algebra; Compact C*-algebra; Von Neumann algebra; Orthogonality preservers; (Semi-)M-norm; (Semi-)M-orthogonality; VON-NEUMANN-ALGEBRAS; OPERATOR ALGEBRAS; ORTHOGONALITY; PRESERVERS; SPACES; MAPS; SUMS;
D O I
10.1016/j.jmaa.2011.03.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elements a and b of a C*-algebra are called orthogonal (a perpendicular to b) if a*b = ab* = 0. We say that vectors x and y in a Banach space X are semi-M-orthogonal (x perpendicular to (SM) y) if parallel to x +/- y parallel to >= max{parallel to x parallel to, parallel to y parallel to}. We prove that every linear bijection T : A -> X, where X is a Banach space, A is either a von Neumann algebra or a compact C*-algebra, and T(a) perpendicular to(SM) T(b) whenever a perpendicular to b, must be continuous. Consequently, every complete (semi-)M-norm on a von Neumann algebra or on a compact C*-algebra is automatically continuous. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:799 / 811
页数:13
相关论文
共 50 条