Sharp bounds for the anisotropic p-capacity of Euclidean compact sets

被引:2
|
作者
Li, Ruixuan [1 ]
Xiong, Changwei [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610065, Sichuan, Peoples R China
关键词
Anisotropic p-capacity; Inverse anisotropic mean curvature flow; Anisotropic Hawking mass; MEAN-CURVATURE FLOW; HYPERSURFACES; MANIFOLDS;
D O I
10.1016/j.jde.2022.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove various sharp bounds for the anisotropic p-capacity CapF,p(K) (1 < p < n) of compact sets K in the Euclidean space Rn (n >= 2). Our results are mainly the anisotropic generalizations of some isotropic 2017] and [Xiao, Adv. Geom. 2017]. Key ingredients in the proofs include the inverse anisotropic mean curvature flow (IAMCF), the anisotropic Hawking mass and its monotonicity property along IAMCF for certain surfaces, and the anisotropic isocapacitary inequality. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 224
页数:29
相关论文
共 50 条
  • [1] The anisotropic p-capacity and the anisotropic Minkowski inequality
    Xia, Chao
    Yin, Jiabin
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (03) : 559 - 582
  • [2] The anisotropic p-capacity and the anisotropic Minkowski inequality
    Chao Xia
    Jiabin Yin
    ScienceChina(Mathematics), 2022, 65 (03) : 559 - 582
  • [3] The anisotropic p-capacity and the anisotropic Minkowski inequality
    Chao Xia
    Jiabin Yin
    Science China Mathematics, 2022, 65 : 559 - 582
  • [4] The sharp quantitative isocapacitary inequality (the case of p-capacity)
    Mukoseeva, Ekaterina
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (01) : 131 - 162
  • [5] Characterization of the subdifferential and minimizers for the anisotropic p-capacity
    Cabezas-Rivas, Esther
    Moll, Salvador
    Solera, Marcos
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (01) : 25 - 48
  • [6] Sharp upper bounds for the capacity in the hyperbolic and Euclidean spaces
    Li, Haizhong
    Li, Ruixuan
    Xiong, Changwei
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
  • [7] VANISHING p-CAPACITY OF SINGULAR SETS FOR p-HARMONIC FUNCTIONS
    Sato, Tomohiko
    Suzuki, Takashi
    Takahashi, Futoshi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [8] ON THE CONTINUITY OF THE P-CAPACITY
    STRUGOV, IF
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (01): : 138 - 140
  • [9] ON THE RELATIVE P-CAPACITY
    HORIUCHI, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1991, 43 (03) : 605 - 617
  • [10] Gaussian p-Capacity
    Liu, Liguang
    Xiao, Jie
    Yang, Dachun
    Yuan, Wen
    GAUSSIAN CAPACITY ANALYSIS, 2018, 2225 : 37 - 53