Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems

被引:16
|
作者
Duan, Beiping [1 ,2 ]
Jin, Bangti [3 ]
Lazarov, Raytcho [2 ,4 ]
Pasciak, Joseph [2 ]
Zhou, Zhi [5 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[4] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Space-Time Finite Element Method; Petrov-Galerkin Method; Fractional Diffusion; Error Estimates; FINITE-ELEMENT-METHOD; SPECTRAL METHOD; SOBOLEV SPACES; EQUATIONS; SCHEMES;
D O I
10.1515/cmam-2017-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a space-time Petrov-Galerkin finite element method for a time-fractional diffusion equation involving a Riemann-Liouville fractional derivative of order alpha is an element of(0, 1) in time and zero initial data. We derive a proper weak formulation involving different solution and test spaces and show the inf-sup condition for the bilinear form and thus itswell-posedness. Further, we develop a novel finite element formulation, show the well-posedness of the discrete problem, and derive error bounds in both energy and L-2 norms for the finite element solution. In the proof of the discrete inf-sup condition, a certain nonstandard L-2 stability property of the L-2 projection operator plays a key role. We provide extensive numerical examples to verify the convergence analysis.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] AN INTERPOLATING LOCAL PETROV-GALERKIN METHOD FOR POTENTIAL PROBLEMS
    Chen, L.
    Liu, C.
    Ma, H. P.
    Cheng, Y. M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (01)
  • [42] MULTISTAGE DISCONTINUOUS PETROV-GALERKIN TIME-MARCHING SCHEME FOR NONLINEAR PROBLEMS
    Munoz-Matute, Judit
    Demkowicz, Leszek
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1956 - 1978
  • [43] Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions
    Youssri, Y. H.
    Ismail, M. I.
    Atta, A. G.
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [44] An ADI Petrov-Galerkin Method with Quadrature for Parabolic Problems
    Bialecki, B.
    Ganesh, M.
    Mustapha, K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (05) : 1129 - 1148
  • [45] On Spectral Petrov-Galerkin Method for Solving Optimal Control Problem Governed by Fractional Diffusion Equations with Fractional Noise
    Li, Shengyue
    Cao, Wanrong
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)
  • [46] A Petrov-Galerkin spectral method for fractional convection-diffusion equations with two-sided fractional derivative
    Wang, Huasheng
    Chen, Yanping
    Huang, Yunqing
    Mao, Wenting
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (03) : 536 - 551
  • [47] An hp-adaptive strategy in a Petrov-Galerkin method for convection-diffusion problems
    Almeida, RC
    Silva, RS
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (03): : 203 - 211
  • [48] Radical Petrov-Galerkin Approach for the Time-Fractional KdV-Burgers' Equation
    Youssri, Youssri Hassan
    Atta, Ahmed Gamal
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (06)
  • [49] Mixed FEM and the Discontinuous Petrov-Galerkin (DPG) Methodology in Numerical Homogenization
    Oleksy, Marta
    Cecot, Witold
    4TH POLISH CONGRESS OF MECHANICS AND THE 23RD INTERNATIONAL CONFERENCE ON COMPUTER METHODS IN MECHANICS, 2020, 2239
  • [50] Fast spectral Petrov-Galerkin method for fractional elliptic equations
    Hao, Zhaopeng
    Zhang, Zhongqiang
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 318 - 330