Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems

被引:15
|
作者
Duan, Beiping [1 ,2 ]
Jin, Bangti [3 ]
Lazarov, Raytcho [2 ,4 ]
Pasciak, Joseph [2 ]
Zhou, Zhi [5 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[4] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Space-Time Finite Element Method; Petrov-Galerkin Method; Fractional Diffusion; Error Estimates; FINITE-ELEMENT-METHOD; SPECTRAL METHOD; SOBOLEV SPACES; EQUATIONS; SCHEMES;
D O I
10.1515/cmam-2017-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a space-time Petrov-Galerkin finite element method for a time-fractional diffusion equation involving a Riemann-Liouville fractional derivative of order alpha is an element of(0, 1) in time and zero initial data. We derive a proper weak formulation involving different solution and test spaces and show the inf-sup condition for the bilinear form and thus itswell-posedness. Further, we develop a novel finite element formulation, show the well-posedness of the discrete problem, and derive error bounds in both energy and L-2 norms for the finite element solution. In the proof of the discrete inf-sup condition, a certain nonstandard L-2 stability property of the L-2 projection operator plays a key role. We provide extensive numerical examples to verify the convergence analysis.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Diffusion Equation
    Sheng, Changtao
    Shen, Jie
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 854 - 876
  • [2] A priori and a posteriori error estimates of a space-time Petrov-Galerkin spectral method for time-fractional diffusion equation
    Tang, Bo
    Mao, Wenting
    Zeng, Zhankuan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 559 - 572
  • [3] A space-time discontinuous Petrov-Galerkin method for acoustic waves
    Ernesti, Johannes
    Wieners, Christian
    [J]. SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 89 - 115
  • [4] A DISCONTINUOUS PETROV-GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2512 - 2529
  • [5] Stability of Petrov-Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems
    Mollet, Christian
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (02) : 231 - 255
  • [6] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Fokker-Planck Equation with Nonsmooth Solution
    Zeng, Wei
    Xiao, Aiguo
    Bu, Weiping
    Wang, Junjie
    Li, Shucun
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (01) : 89 - 105
  • [7] A novel spectral Galerkin/Petrov-Galerkin algorithm for the multi-dimensional space-time fractional advection-diffusion-reaction equations with nonsmooth solutions
    Hafez, Ramy M.
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 678 - 690
  • [8] Petrov-Galerkin Lucas Polynomials Procedure for the Time-Fractional Diffusion Equation
    Youssri, Y. H.
    Atta, A. G.
    [J]. CONTEMPORARY MATHEMATICS, 2023, 4 (02): : 230 - 248
  • [9] Space-time streamline upwind Petrov-Galerkin methods for the Boltzmann transport equation
    Pain, C. C.
    Eaton, M. D.
    Smedley-Stevenson, R. P.
    Goddard, A. J. H.
    Piggott, M. D.
    de Oliveira, C. R. E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4334 - 4357
  • [10] A Petrov-Galerkin spectral element method for fractional elliptic problems
    Kharazmi, Ehsan
    Zayernouri, Mohsen
    Karniadakis, George Em
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 512 - 536