Variational principle for eigenvalue problems of Hamiltonian systems

被引:15
|
作者
Benguria, RD
Depassier, MC
机构
[1] Facultad de Física, P. Universidad Católica de Chile, Santiago 22
关键词
D O I
10.1103/PhysRevLett.77.2847
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the bifurcation problem u '' + lambda u = N(u) with two point boundary conditions where N(LI) is a general nonlinear term which may also depend on the eigenvalue lambda. We give a variational characterization of the bifurcating branch lambda as a function of th amplitude of the solution. As an application we show how it can be used to obtain simple approximate closed formulas for the period of large amplitude oscillations.
引用
下载
收藏
页码:2847 / 2850
页数:4
相关论文
共 50 条
  • [31] VARIATIONAL FORMULA FOR PRINCIPAL EIGENVALUE FOR OPERATORS WITH MAXIMUM PRINCIPLE
    DONSKER, MD
    VARADHAN, SRS
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (03) : 780 - 783
  • [32] Properties of Hamiltonian systems in the Pontryagin maximum principle for economic growth problems
    A. A. Krasovskii
    A. M. Tarasyev
    Proceedings of the Steklov Institute of Mathematics, 2008, 262 : 121 - 138
  • [33] Properties of Hamiltonian Systems in the Pontryagin Maximum Principle for Economic Growth Problems
    Krasovskii, A. A.
    Tarasyev, A. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 262 (01) : 121 - 138
  • [34] Structured maximal perturbations for Hamiltonian eigenvalue problems
    Butta, Paolo
    Noschese, Silvia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 304 - 312
  • [35] Variational data assimilation for Hamiltonian problems
    Watkinson, LR
    Lawless, AS
    Nichols, NK
    Roulstone, I
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1361 - 1367
  • [36] Numerical integration of stochastic contact Hamiltonian systems via stochastic Herglotz variational principle
    Zhan, Qingyi
    Duan, Jinqiao
    Li, Xiaofan
    Li, Yuhong
    PHYSICA SCRIPTA, 2023, 98 (05)
  • [37] ERROR-BOUNDS VIA A NEW VARIATIONAL PRINCIPLE FOR CLASSICAL HAMILTONIAN-SYSTEMS
    DJUKIC, DS
    ATANACKOVIC, TM
    ACTA MECHANICA, 1984, 50 (3-4) : 177 - 191
  • [38] A Type II Hamiltonian Variational Principle and Adjoint Systems for Lie GroupsA Type II Hamiltonian Variational Principle and Adjoint SystemsB. K. Tran and M. Leok
    Brian K. Tran
    Melvin Leok
    Journal of Dynamical and Control Systems, 2025, 31 (1)
  • [39] Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications
    Benner, P
    Kressner, D
    Mehrmann, V
    PROCEEDINGS OF THE CONFERENCE ON APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING, 2005, : 3 - 39
  • [40] Hydrodynamics with gauge anomaly: Variational principle and Hamiltonian formulation
    Monteiro, Gustavo M.
    Abanov, Alexander G.
    Nair, V. P.
    PHYSICAL REVIEW D, 2015, 91 (12):