Comparison and convergence of optical absorption spectra of noble metal nanoparticles computed using linear-response and real-time time-dependent density functional theories

被引:4
|
作者
Weerawardene, K. L. Dimuthu M. [1 ]
Aikens, Christine M. [1 ]
机构
[1] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
DISCRETE-DIPOLE APPROXIMATION; GOLD NANOPARTICLES; SURFACE-PLASMONS; ELECTRON DYNAMICS; ASPECT-RATIO; SILVER; TDDFT; SIZE; NANOCRYSTALS; NANORODS;
D O I
10.1016/j.comptc.2018.11.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The real-time time-dependent density functional theory (RT-TDDFT) is rapidly gaining prominence as an alternative approach to capture optical properties of molecular systems, which warrants the necessity to benchmark the traditional linear response (LR) method and the RT approach. We calculate the absorption spectra of noble metal nanoparticles with a variety of sizes and shapes to demonstrate the consistency of the two methods over a broad range of energy. The RT spectrum obtained using a grid-based basis set with pseudopotentials achieves results in good agreement with the LR spectrum obtained with large QZ4P atom-centered basis sets. Factors that lead to convergence of the spectra are considered. In addition, the real-time variation of the electron density is visualized to show the collective oscillation of electron density for the plasmon modes of noble metal nanoparticles. The RT approach is most useful when calculating wide absorption spectra of larger gold or silver nanoparticles.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [41] Magnetic circular dichroism in real-time time-dependent density functional theory
    Lee, K. -M.
    Yabana, K.
    Bertsch, G. F.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (14):
  • [42] Peak-Shifting in Real-Time Time-Dependent Density Functional Theory
    Provorse, Makenzie R.
    Habenicht, Bradley F.
    Isborn, Christine M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (10) : 4791 - 4802
  • [43] Reliability and performances of real-time time-dependent auxiliary density functional theory
    Tandiana, Rika
    Clavaguera, Carine
    Hasnaoui, Karim
    Pedroza-Montero, Jesus Nain
    de la Lande, Aurelien
    THEORETICAL CHEMISTRY ACCOUNTS, 2021, 140 (09)
  • [44] Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain
    Wang, Fan
    Yam, Chi Yung
    Chen, GuanHua
    Fan, Kangnian
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (13):
  • [45] Resonance Raman spectra of ortho-nitrophenol calculated by real-time time-dependent density functional theory
    Thomas, Martin
    Latorre, Federico
    Marquetand, Philipp
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [46] Time-dependent density functional calculations on the optical spectra of metal-porphyrins and metal-phthalocyanines
    Baerends, EJ
    Rosa, A
    Ricciardi, G
    van Gisbergen, SJA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U703 - U703
  • [47] Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method
    Mueller, Carolin
    Sharma, Manas
    Sierka, Marek
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (30) : 2573 - 2582
  • [48] Efficient Calculation of Magnetic Circular Dichroism Spectra Using Spin-Noncollinear Linear-Response Time-Dependent Density Functional Theory in Finite Magnetic Fields
    Pausch, Ansgar
    Holzer, Christof
    Klopper, Wim
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (06) : 3747 - 3758
  • [49] Optical Response of Extended Systems Using Time-Dependent Density Functional Theory
    Sharma, S.
    Dewhurst, J. K.
    Gross, E. K. U.
    FIRST PRINCIPLES APPROACHES TO SPECTROSCOPIC PROPERTIES OF COMPLEX MATERIALS, 2014, 347 : 235 - 257
  • [50] Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory
    Bowman, David N.
    Asher, Jason C.
    Fischer, Sean A.
    Cramer, Christopher J.
    Govind, Niranjan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (40) : 27452 - 27462