A simple and rapid method for enzymatic synthesis of CRISPR-Cas9 sgRNA libraries

被引:5
|
作者
Yates, Joshua D. [1 ]
Russell, Robert C. [1 ]
Barton, Nathaniel J. [1 ]
Yost, H. Joseph [2 ,3 ]
Hill, Jonathon T. [1 ]
机构
[1] Brigham Young Univ, Dept Cell Biol & Physiol, Provo, UT 84602 USA
[2] Univ Utah, Mol Med Program, Salt Lake City, UT USA
[3] Univ Utah, Dept Neurobiol, Salt Lake City, UT USA
关键词
GENETIC SCREENS; HUMAN-CELLS; GENOME; RNA; ELEMENTS; CAS9;
D O I
10.1093/nar/gkab838
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas9 sgRNA libraries have transformed functional genetic screening and have enabled several innovative methods that rely on simultaneously targeting numerous genetic loci. Such libraries could be used in a vast number of biological systems and in the development of new technologies, but library generation is hindered by the cost, time, and sequence data required for sgRNA library synthesis. Here, we describe a rapid enzymatic method for generating robust, variant-matched libraries from any source of cDNA in under 3 h. This method, which we have named SLALOM, utilizes a custom sgRNA scaffold sequence and a novel method for detaching oligonucleotides from solid supports by a strand displacing polymerase. With this method, we constructed libraries targeting the E. coli genome and the transcriptome of developing zebrafish hearts, demonstrating its ability to expand the reach of CRISPR technology and facilitate methods requiring custom libraries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +
  • [22] CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools
    Stoyko, Daniel
    Timothy, O.
    Hernandez, Adrianna
    Konstantinidou, Parthena
    Meng, Qingcai
    Haase, Astrid D.
    CURRENT PROTOCOLS, 2022, 2 (12):
  • [23] A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis
    Sachla, Ankita J.
    Alfonso, Alexander J.
    Helmann, John D.
    MICROBIOLOGY SPECTRUM, 2021, 9 (02):
  • [24] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    John G Doench
    Nicolo Fusi
    Meagan Sullender
    Mudra Hegde
    Emma W Vaimberg
    Katherine F Donovan
    Ian Smith
    Zuzana Tothova
    Craig Wilen
    Robert Orchard
    Herbert W Virgin
    Jennifer Listgarten
    David E Root
    Nature Biotechnology, 2016, 34 : 184 - 191
  • [25] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [26] CRISPR-Cas9: a world first?
    不详
    LANCET, 2018, 392 (10163): : 2413 - 2413
  • [27] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [28] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [29] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855
  • [30] MicroRNAs tame CRISPR-Cas9
    Jouravleva, Karina
    Zamore, Phillip D.
    NATURE CELL BIOLOGY, 2019, 21 (04) : 416 - 417