Mechanism of Transcription Anti-termination in Human Mitochondria

被引:81
|
作者
Hillen, Hauke S. [1 ]
Parshin, Andrey V. [2 ]
Agaronyan, Karen [2 ]
Morozov, Yaroslav I. [2 ]
Graber, James J. [2 ]
Chernev, Aleksandar [3 ,4 ]
Schwinghammer, Kathrin [1 ]
Urlaub, Henning [3 ,4 ]
Anikin, Michael [2 ]
Cramer, Patrick [1 ]
Temiakov, Dmitry [2 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Mol Biol, Fassberg 11, D-37077 Gottingen, Germany
[2] Rowan Univ, Sch Osteopath Med, Dept Cell Biol, 2 Med Ctr Dr, Stratford, NJ 08084 USA
[3] Max Planck Inst Biophys Chem, Bioanalyt Mass Spectrometry, D-37077 Gottingen, Germany
[4] Univ Med Ctr Gottingen, Inst Clin Chem, Bioanalyt, D-37075 Gottingen, Germany
基金
欧洲研究理事会;
关键词
HOLLIDAY JUNCTION RESOLVASE; CROSS-LINKED PEPTIDES; STRUCTURAL BASIS; SCHIZOSACCHAROMYCES-POMBE; RNA; DNA; ELONGATION; INITIATION; PROTEIN; IDENTIFICATION;
D O I
10.1016/j.cell.2017.09.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp,'' providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.
引用
收藏
页码:1082 / +
页数:25
相关论文
共 50 条