A Microfluidic-Based Model for Spatially Constrained Culture of Intestinal Microbiota

被引:16
|
作者
Pajoumshariati, Seyed Ramin [1 ]
Azizi, Morteza [1 ]
Zhang, Shiying [2 ]
Dogan, Belgin [2 ]
Simpson, Kenneth W. [2 ]
Abbaspourrad, Alireza [1 ]
机构
[1] Cornell Univ, Coll Agr & Life Sci, Dept Food Sci, Stocking Hall, Ithaca, NY 14853 USA
[2] Cornell Univ, Coll Vet Med, Dept Clin Sci, Ithaca, NY 14853 USA
关键词
coculture; in vitro model; microbiome; microfibers; microfluidics; INVASIVE ESCHERICHIA-COLI; KLEBSIELLA-PNEUMONIAE; BIOFILM FORMATION; ANTIMICROBIAL ACTIVITY; GENE-EXPRESSION; IN-VITRO; CELLULOSE; GUT; GROWTH; ADHERENT;
D O I
10.1002/adfm.201805568
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perturbation of the microbiome is implicated in the pathogenesis of many human ailments, including inflammatory bowel diseases such as Crohn's disease (CD). Recapitulating the microbiome associated with health and disease necessitates controlling the composition of multiple bacterial species. This is difficult to achieve in vitro due to the overgrowth of bacterial species over time. Here, a microfluidic-based model incorporating bacteria-embedded hydrogel microfibers for the coculture of human enteric bacteria is introduced. Employing bacterial species and strains associated with CD, it is shown that the hydrogel-based bacteria-embedded microfiber model is physically and mechanically robust, and tunable. Metabolite analysis of the medium in both mono- and coculture revealed the interfiber exchange of soluble mediators and their impact on the growth of different bacterial species. This novel approach should enhance the ability to decipher contact-independent cross-talk within the polymicrobial intestinal luminal environment, and its impact on the intestinal epithelium.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Microfluidic-Based Bacterial Molecular Computing on a Chip
    Martins, Daniel P.
    Barros, Michael Taynnan
    O'Sullivan, Benjamin J.
    Seymour, Ian
    O'Riordan, Alan
    Coffey, Lee
    Sweeney, Joseph B.
    Balasubramaniam, Sasitharan
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16772 - 16784
  • [22] On the Application of Microfluidic-Based Technologies in Forensics: A Review
    Bazyar, Hanieh
    SENSORS, 2023, 23 (13)
  • [23] Microfluidic-based nanoparticle synthesis and their potential applications
    Khizar, Sumera
    Zine, Nadia
    Errachid, Abdelhamid
    Jaffrezic-Renault, Nicole
    Elaissari, Abdelhamid
    ELECTROPHORESIS, 2022, 43 (7-8) : 819 - 838
  • [24] Microfluidic-Based Approaches for Foodborne Pathogen Detection
    Zhao, Xihong
    Li, Mei
    Liu, Yao
    MICROORGANISMS, 2019, 7 (10)
  • [25] Flow Analysis of Microfluidic-based Acoustic Sensor
    Rahman, M. F. A.
    Arshad, M. R.
    Manaf, A. A.
    Yaacob, M. I. H.
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), VOLS 1-2, 2012, : 398 - 401
  • [26] Recent Advances in Microfluidic-Based Microphysiological Systems
    Sung-Min Kang
    BioChip Journal, 2022, 16 : 13 - 26
  • [27] Recent Advances in Microfluidic-Based Microphysiological Systems
    Kang, Sung-Min
    BIOCHIP JOURNAL, 2022, 16 (01) : 13 - 26
  • [28] Advances in microfluidic-based DNA methylation analysis
    Li, Jiwen
    Li, Tiechuan
    Duan, Xuexin
    NANOTECHNOLOGY AND PRECISION ENGINEERING, 2024, 7 (01)
  • [29] Microfluidic-based automated multiplex immunophenotyping and imaging
    Pelz, B.
    Migliozzi, D.
    Cappi, G.
    Dupouy, D.
    Gijs, M.
    VIRCHOWS ARCHIV, 2018, 473 : S1 - S1
  • [30] MICROFLUIDIC-BASED SAMPLE CHIPS FOR RADIOACTIVE SOLUTIONS
    Tripp, J. L.
    Law, J. D.
    Smith, T. E.
    Rutledge, V. J.
    Bauer, W. F.
    Ball, R. D.
    Hahn, P. A.
    NUCLEAR TECHNOLOGY, 2015, 189 (03) : 301 - 311