Linear dependence in Hylleraas configuration-interaction calculations of He atom

被引:9
|
作者
Zhang, Yong Zhi [1 ,2 ]
Gao, Ya Chen [1 ,2 ]
Jiao, Li Guang [3 ]
Liu, Fang [4 ]
Ho, Yew Kam [5 ]
机构
[1] Heilongjiang Univ, Coll Heilongjiang Prov, Key Lab Elect Engn, Harbin 150080, Peoples R China
[2] Heilongjiang Univ, Coll Phys Sci & Technol, Harbin, Peoples R China
[3] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
[4] East Univ Heilongjiang, Dept Comp Sci & Elect Engn, Harbin, Peoples R China
[5] Acad Sinica, Inst Atom & Mol Sci, Taipei, Taiwan
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Hylleraas configuration-interaction basis set; linear dependence; Lowdin's canonical orthogonalization method; LOWDINS CANONICAL ORTHOGONALIZATION; VARIATIONAL CALCULATIONS; RYDBERG STATES; GROUND-STATE; HELIUM; INTEGRALS; CONVERGENCE; ENERGIES; SYSTEMS;
D O I
10.1002/qua.26136
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The explicitly-correlated basis sets are much easier to be linearly dependent than the product type bases constructed by one-electron orbitals due to the explicit inclusion of interelectronic coordinates in system wave functions. In this work, we apply Lowdin's canonical orthogonalization method to study the linearly dependent problems arising from the variational calculations based on Hylleraas configuration-interaction (Hy-CI) basis functions. Both the ground and excited states of He atom are calculated with increasingly large basis sets. Our results show that the linear dependence in Hy-CI basis sets can be successfully overcome by employing Lowdin's canonical orthogonalization method, yet without using extended higher-precision arithmetic in numerical implementations. Therefore, the computational effort can be reduced considerably. It is expected that the present method can be applied to other types of explicitly correlated basis functions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] CITATION CLASSIC - CONFIGURATION-INTERACTION CALCULATIONS ON THE NITROGEN MOLECULE
    DAVIDSON, ER
    LANGHOFF, SR
    CURRENT CONTENTS/PHYSICAL CHEMICAL & EARTH SCIENCES, 1988, (28): : 22 - 22
  • [32] NONVARIATIONAL CONFIGURATION-INTERACTION CALCULATIONS BY LOCAL SCALING METHOD
    KOGA, T
    YAMAMOTO, Y
    LUDENA, EV
    JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (05): : 3805 - 3807
  • [33] SIZE-CONSISTENCY CORRECTIONS FOR CONFIGURATION-INTERACTION CALCULATIONS
    MEISSNER, L
    CHEMICAL PHYSICS LETTERS, 1988, 146 (3-4) : 204 - 210
  • [34] CITATION CLASSIC - CONFIGURATION-INTERACTION CALCULATIONS ON THE NITROGEN MOLECULE
    DAVIDSON, ER
    LANGHOFF, SR
    CURRENT CONTENTS/ENGINEERING TECHNOLOGY & APPLIED SCIENCES, 1988, (28): : 22 - 22
  • [35] FULL CONFIGURATION-INTERACTION BENCHMARK CALCULATIONS FOR TRANSITION MOMENTS
    BAUSCHLICHER, CW
    LANGHOFF, SR
    THEORETICA CHIMICA ACTA, 1988, 73 (01): : 43 - 53
  • [36] BENCHMARK FULL CONFIGURATION-INTERACTION CALCULATIONS ON THE HELIUM DIMER
    VANMOURIK, T
    VANLENTHE, JH
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (19): : 7479 - 7483
  • [37] ACCURACY OF ENERGY EXTRAPOLATION IN MULTIREFERENCE CONFIGURATION-INTERACTION CALCULATIONS
    JACKELS, CF
    SHAVITT, I
    THEORETICA CHIMICA ACTA, 1981, 58 (02): : 81 - 96
  • [38] Configuration-interaction calculations of positron binding to zinc and cadmium
    Bromley, MWJ
    Mitroy, J
    PHYSICAL REVIEW A, 2002, 65 (06):
  • [39] Configuration-Interaction Perturbation Theory Calculations of Pu II
    Savukov, Igor
    ATOMS, 2020, 8 (03)
  • [40] ABINITIO CONFIGURATION-INTERACTION CALCULATIONS FOR 5 STATES OF ARHE
    LIAO, MZ
    BALASUBRAMANIAN, K
    CHAPMAN, D
    LIN, SH
    CHEMICAL PHYSICS, 1987, 111 (03) : 423 - 429