The magnetostratigraphy of the mammal-bearing alluvial fan-fan delta sequences of the Fortuna basin (SE Spain) has yielded an accurate chronology for the late Turolian (Messinian) basin infill. From early to late Messinian (at least between 6.8 and 5.7 Ma), the Fortuna basin records the sedimentation of alluvial-palustrine deposits over a confined shallow basin. Changing environmental conditions in the latest Messinian are illustrated by the retreat of palustrine facies. A sapid progradation of the marginal elastic wedges and the initiation of an efficient basin drainage at similar to 5.8 Ma (lower part of chron C3r) most likely represents the onshore response to the drastic drop of base level taking place during the Messinian salinity crisis. This study further provides improved age estimates for the late Turolian land mammal events in southern Spain. The oldest MN 13 locality in the studied sections is correlated to chron C3Ar at an age of 6.8 Ma. The entry of camels and the murid Paraethomys in southern Spain occurs in chron C3An.ln at 6.1 Ma, and gives further support for land mammal exchange between Africa and the Iberian peninsula prior to the salinity crisis, in goad agreement with results from northern Africa [M. Benammi, M. Calvo, M. Prevot, J.J. Jaeger, Magnetostratigraphy and paleontology of Ait Kandoula basin (High Atlas, Morocco) and the African-European late Miocene terrestrial fauna exchanges, Earth Planet. Sci. Lett. 145 (1996) 15-29]. The age of the studied sequences provides important constraints on the understanding of the sedimentary evolution of the eastern Betic margin, and shows that previous interpretations of the evaporitic-diatomitic sequences of the Fortuna basin, as being coeval to the late Messinian salinity crisis in the Mediterranean, are not correct. The confinement leading to the emergence of the Fortuna basin occurred in the late Tortonian to earliest Messinian, similar to other intramontane basins in the Betics. Therefore, the inclusion of the Fortuna basin in a hypothetical marine Betic Corridor during the late Messinian is no longer tenable. (C) 1998 Elsevier Science B.V. All rights reserved.