First-principles study of InAs, InxGa1-xSb nanotubes and InAs/InxGa1-xSb nanotube superlattices

被引:3
|
作者
Sun, Wei-Feng [1 ]
Zhao, Lian-Cheng [1 ]
机构
[1] Harbin Inst Technol, Dept Informat Mat Sci & Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
来源
关键词
ELECTRONIC-STRUCTURE; INGAAS/GAAS NANOTUBES; ENERGY-GAP; SIMULATION; PSEUDOPOTENTIALS; TEMPERATURE; ABSORPTION;
D O I
10.1016/j.physe.2011.01.009
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconductor InAs, GaSb and InAs/InxGa1-xSb superlattices have been used for optoelectronic devices in a wide infrared region from near to long wavelength infrared. The efficiency of these devices could be increased shrinking the size and modifying the constituent structure. Nanostructured materials are natural candidates for these applications. We have implemented first-principles theory to investigate the structural and electronic properties of (10,0) InAs, GaSb, InxGa1-xSb nanotubes and InAs/InxGa1-xSb nanotube superlattices. The InAs and GaSb nanotubes exhibit direct band-gaps of 0.24 and 0.41 eV. The InxGa1-xSb nanotubes also exhibit direct band-gaps for the whole range of In compositions, with "scissor" modified band-gap varying from 0.56 to 0.15 eV, and a negative band-gap bowing coefficient of -0.15 eV. The InAs/InxGa1-xSb nanotube superlattice shows a type-II broken-gap band alignment, and the band-gap explicitly varies with the superlattice period and alloy concentration x. The results indicate the possibility of engineering the band-gaps of InAs/InxGa1-xSb nanotube superlattices by adjusting nanotube segment length and alloy concentration of constituent materials. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1099 / 1104
页数:6
相关论文
共 50 条
  • [21] THEORETICAL PERFORMANCE OF INAS/INXGA1-XSB SUPERLATTICE-BASED MIDWAVE INFRARED-LASERS
    GREIN, CH
    YOUNG, PM
    EHRENREICH, H
    JOURNAL OF APPLIED PHYSICS, 1994, 76 (03) : 1940 - 1942
  • [22] Cathodoluminescence study of InxGa1-xSb crystals grown by the Bridgman method
    Chioncel, MF
    Díaz-Guerra, C
    Piqueras, J
    Vincent, J
    Bermúdez, V
    Diéguez, E
    JOURNAL OF CRYSTAL GROWTH, 2004, 268 (1-2) : 52 - 58
  • [23] THEORETICAL PERFORMANCE OF VERY LONG-WAVELENGTH INAS/INXGA1-XSB SUPERLATTICE BASED INFRARED DETECTORS
    GREIN, CH
    CRUZ, H
    FLATTE, ME
    EHRENREICH, H
    APPLIED PHYSICS LETTERS, 1994, 65 (20) : 2530 - 2532
  • [24] COMPARATIVE-STUDY OF BAND-STRUCTURE CALCULATIONS FOR TYPE-II INAS/INXGA1-XSB STRAINED-LAYER SUPERLATTICES
    TALWAR, DN
    LOEHR, JP
    JOGAI, B
    PHYSICAL REVIEW B, 1994, 49 (15): : 10345 - 10353
  • [25] Viscosity of Molten InSb, GaSb, and InxGa1-xSb Alloy Semiconductors
    Sakata, K.
    Mukai, M.
    Rajesh, G.
    Arivanandhan, M.
    Inatomi, Y.
    Ishikawa, T.
    Hayakawa, Y.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (02) : 352 - 360
  • [26] BAND-STRUCTURE CALCULATIONS OF INXGA1-XSB UNDER PRESSURE
    BOUARISSA, N
    AOURAG, H
    INFRARED PHYSICS & TECHNOLOGY, 1995, 36 (06) : 973 - 980
  • [27] First-principles electronic structure study of InxGa1-xAs nanotubes and InAs/GaAs nanotube superlattices
    Sun, Wei-Feng
    Wang, Xuan
    Sun, Zhi
    Lei, Qing-Quan
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 60 : 29 - 39
  • [28] Rapid solidification processing and characterization of semiconducting InxGa1-xSb alloys
    Kumta, Prashant N.
    Risbud, Subhash H.
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1988, 58 (05): : 513 - 528
  • [29] The disorder effect on the electron and positron structure in the semiconductor alloy InxGa1-xSb
    Bouarissa, N
    Aourag, H
    SOLID STATE COMMUNICATIONS, 1997, 101 (03) : 205 - 210
  • [30] Room temperature operation of InxGa1-xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD
    Wu, D. H.
    Zhang, Y. Y.
    Razeghi, M.
    APPLIED PHYSICS LETTERS, 2018, 112 (11)