A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions

被引:10
|
作者
Farhlou, Mohamed [1 ]
Nicaise, Serge [2 ]
Paquet, Luc [2 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Valenciennes & Hainaut Cambresis, MACS, ISTV, F-59313 Valenciennes 9, France
关键词
Navier-Stokes system; corner singularity; mixed finite-element method; refined mesh;
D O I
10.1093/imanum/drm005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the mixed formulation of the Navier-Stokes equations with mixed boundary conditions in 2D polygonal domains and its numerical approximation. We first describe the regularity of any solution. The problem is then approximated by a mixed finite-element method where the strain tensor and the antisymmetric gradient tensor, quantities of practical importance, are introduced as new unknowns. An existence result for the finite-element solution and convergence results are proved near a nonsingular solution. Quasi-optimal error estimates are finally presented.
引用
下载
收藏
页码:25 / 45
页数:21
相关论文
共 50 条
  • [31] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2719 - 2762
  • [32] Study of a class of control problems for the stationary Navier-Stokes equations with mixed boundary conditions
    Brizitskii R.V.
    Journal of Applied and Industrial Mathematics, 2010, 4 (03) : 309 - 317
  • [33] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [34] MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS
    Li, Xiaocui
    You, Xu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (01): : 130 - 146
  • [35] AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    Camano, Jessika
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Tierra, Giordano
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1069 - 1092
  • [36] Stabilized finite element method for Navier-Stokes equations with physical boundary conditions
    Amara, M.
    Capatina-Papaghiuc, D.
    Trujillo, D.
    MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1195 - 1217
  • [37] A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations
    Shi, Dongyang
    Ren, Jincheng
    Hao, Xiaobin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 462 - 477
  • [38] ON CONFORMING FINITE-ELEMENT METHODS FOR THE INHOMOGENEOUS STATIONARY NAVIER-STOKES EQUATIONS
    GUNZBURGER, MD
    PETERSON, JS
    NUMERISCHE MATHEMATIK, 1983, 42 (02) : 173 - 194
  • [39] Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations
    Javier de Frutos
    Bosco García-Archilla
    Julia Novo
    Journal of Scientific Computing, 2012, 52 : 619 - 637
  • [40] Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) : 619 - 637